Novel high temperature metal organic chemical vapor deposition vertical rotating-disk reactor with multizone heating for GaN and related materials

1995 ◽  
Vol 35 (1-3) ◽  
pp. 97-101 ◽  
Author(s):  
R. Walker ◽  
A.I. Gurary ◽  
C. Yuan ◽  
P. Zawadzki ◽  
K. Moy ◽  
...  
1999 ◽  
Vol 597 ◽  
Author(s):  
John McAleese ◽  
L. Gary Provost ◽  
Gary S. Tompa ◽  
Andrei Colibaba-Evulet ◽  
Nick G. Gulmac ◽  
...  

AbstractOver the past 30 years, the need for transparent conducting oxide coatings has been met almost exclusively by tin doped indium-oxide. As the display market advances in complexity, the demand for alternative transparent materials exhibiting high conductivity and stability has become greater. In this paper, we discuss briefly the merits of using doped ZnO as a superior transparent conducting oxide. We report here our results in scaling our ZnO MOCVD reactor technology from 5° to 12° diameter susceptors. Using Rotating Disk Reactor-Low Pressure Metal Organic Chemical Vapor Deposition, we have been able to obtain large area uniformity on multiple (14 cm × 9 cm) glass sheets per deposition run. Promising film characteristics suggest significant application in the field of flat panel displays and other optical systems may be possible.


1989 ◽  
Vol 169 ◽  
Author(s):  
D. W. Noh ◽  
B. Gallois ◽  
Y. Q. Li ◽  
C. Chern ◽  
B. Rear ◽  
...  

AbstractSuperconducting thin films of YBa2Cu307‐x were grown on MgO (100) and YSZ(IOO) substrates without post‐annealing by metal organic chemical vapor deposition using vertical, high‐speed (1100 rpm) rotating disk reactor. The source materials were Y(tmhd)3, Ba(tmhd)2, and Cu(tmhd)2, which were kept at 135 °C, 240 °C, and 120 °C respectively. The precursors were transported using nitrogen as the carrier gas and introduced separately into the cylindrical stainless steel reaction chamber, which was maintained at 60 torr. The oxygen partial pressure was 30 Torr. The substrates were heated resistively at 800°C. After growth, the films were cooled down at a rate of 5 °C/min under 1 atmospheric pressure of pure oxygen. The X‐ray diffraction pattern of the films showed primarily an orientation of c‐axis perpendicular to the substrates, with weak peaks of (hoo) corresponding to a‐axis orientation. Scanning Electron Microscopy of the films showed a well‐developed a‐axis and c‐axis plate‐like structure which appeared as rectangular micron‐sized features on the MgO surface. On the YSZ substrates a‐axis and c‐axis plate‐like projections were also observed, with the dense plate‐like c‐axis orientation dominant. Four probe resistance measurements showed Tc(R=0) at 91.8 K(△TC=2.2 K) and 85 K (△TC=7 K) on YSZ and MgO substrates respectively.


2008 ◽  
Vol 1068 ◽  
Author(s):  
Jung Hun Jang ◽  
A M Herrero ◽  
Seungyoung Son ◽  
B Gila ◽  
C Abernathy ◽  
...  

ABSTRACTGaN layers were grown on c-plane sapphire substrates by using a conventional two step growth method via metal organic chemical vapor deposition (MOCVD). The effect of different growth conditions used in the deposition of the low temperature nucleation layer and high temperature islands on the crystalline quality of the GaN layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). The polar (tilt) and azimuthal (twist) spread were estimated from the full width at half maximum (FWHM) values of the omega rocking curves (¥ø-RCs) recorded from the planes parallel and perpendicular to the sample surface. It was found from the XRD and TEM study that the edge and mixed type threading dislocations are dominant defects so that the relevant figure of merit (FOM) for the crystalline quality should be considered only by the FWHM value of ¥ø-RC of the surface perpendicular plane. The result showed that the mixed- and edge-types dislocations were strongly associated with the growth conditions used in the deposition of the nucleation layer and high temperature islands.


Sign in / Sign up

Export Citation Format

Share Document