Tool-life testing in the end milling of Inconel 718

1995 ◽  
Vol 55 (3-4) ◽  
pp. 321-330 ◽  
Author(s):  
M. Alauddin ◽  
M.A. El Baradie ◽  
M.S.J. Hashmi
2011 ◽  
Vol 415-417 ◽  
pp. 420-423 ◽  
Author(s):  
AKM Nurul Amin ◽  
Mohammad Ishtiyaq Hossain ◽  
Anayet Ullah Patwari

Abstract. This paper presents the outcome of a study on heat assisted end milling of Inconel 718 using inducting heating technique conducted to enhance the machinability of the material. The heating temperature maintained below the phase transformation temperature was aimed at softening the top removable material layers. The experimental results of both conventional and heat assisted machining were compared. The machinability of Inconel 718 under these conditions was evaluated in terms of tool life, tool wear morphology and chatter. The advantages of Induction heating is demonstrated by an longer tool life and lower chatter. The study showed that preheated machining facilitates up to 80% increase of tool life over conventional machining conducted using TiAlN coated carbide inserts.


Author(s):  
M Alauddin ◽  
M A El Baradie ◽  
M S J Hashmi

Most published research works on machining Inconel 718 have been mainly concerned with turning, while the milling process has received little attention due to the complexity of the process. In this paper a series of end-milling experiments of Inconel 718 has been carried out in order to: (a) optimize cutting variables, (b) investigate tool life values and relationships and (c) investigate surface roughness. The machining parameters have been optimized by measuring cutting forces. Tool life tests have been carried out using carbide inserts and the surface roughness has been analysed.


2014 ◽  
Vol 564 ◽  
pp. 566-571
Author(s):  
K. Kamdani ◽  
Sulaiman Hasan ◽  
Mohd Amri Lajis

Inconel 718 is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based super alloys. This material usually being used or operate in high temperature and extreme condition like aerospace industry, turbocharger rotors and seals. This research presents an experimental study of the cutting force variation, surface roughness, tool life and tool wear in end milling Inconel 718. The experimental results showed that flank wear was the predominant failure mode affecting tool life for TiAlN and TiN coated carbide tool. TiAlN is the better coated tool than TiN because it produce better surface finish and resultant force. Feed rate is one of the parameter that effecting results in this experiment. The higher feed rate will shorten the life of the tool. Although for the cutting condition, the situation is quite different where the proper cutting speed will maintain the tool life and tool wear for cutting tool. The overall study shows that TiAlN coated carbide tool with cutting speed 100 m/min, depth of cut 0.5 mm and feed rate 0.1 mm/tooth is the optimum parameter in this experiment.


2001 ◽  
Vol 118 (1-3) ◽  
pp. 29-35 ◽  
Author(s):  
Adrian Sharman ◽  
Richard C. Dewes ◽  
David K. Aspinwall
Keyword(s):  

2013 ◽  
Vol 773-774 ◽  
pp. 653-660
Author(s):  
Mohd Shahir Kasim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
Juri Saedon ◽  
Mohd Amri Sulaiman

Inconel 718 is a material exhibiting characteristic that are able to maintain strength and integrity at elevated temperatures, but it is well known as a material with poor machinability. This paper presents a study of the performance in high speed machining of TiAlN/AlCrN nanomultilayer PVD coated Inconel 718 with minimum lubrication. Investigations have been made into the effects of cutting speed, feed rate and depth of cut (DOC) on the tool life. A toolmakers microscope and a scanning electron microscope (SEM) were used to examine the tool wear and chemical attrition, respectively, on the cutting tool during machining. In the machining of aged Inconel 718, the cutting tool experienced attrition, abrasion and notch wear throughout the experiment. Notch wear was found to be the dominant failure mode during milling; this wear appeared severe when localized flank wear reached the critical zone. The influence of radial depth despite the cutting speed, well known as having the most significant effect on tool life, is also discussed.


2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document