Multiple regulatory elements direct the complex expression pattern of the Drosophila segmentation gene paired

1994 ◽  
Vol 48 (2) ◽  
pp. 119-128 ◽  
Author(s):  
Thomas Gutjahr ◽  
Carlos E. Vanario-Alonso ◽  
Leslie Pick ◽  
Markus Noll
1995 ◽  
Vol 15 (7) ◽  
pp. 3960-3968 ◽  
Author(s):  
D H Schwyter ◽  
J D Huang ◽  
T Dubnicoff ◽  
A J Courey

The Drosophila melanogaster decapentaplegic (dpp) gene encodes a transforming growth factor beta-related cell signaling molecule that plays a critical role in dorsal/ventral pattern formation. The dpp expression pattern in the Drosophila embryo is dynamic, consisting of three phases. Phase I, in which dpp is expressed in a broad dorsal domain, depends on elements in the dpp second intron that interact with the Dorsal transcription factor to repress transcription ventrally. In contrast, phases II and III, in which dpp is expressed first in broad longitudinal stripes (phase II) and subsequently in narrow longitudinal stripes (phase III), depend on multiple independent elements in the dpp 5'-flanking region. Several aspects of the normal dpp expression pattern appear to depend on the unique properties of the dpp core promoter. For example, this core promoter (extending from -22 to +6) is able to direct a phase II expression pattern in the absence of additional upstream or downstream regulatory elements. In addition, a ventral-specific enhancer in the dpp 5'-flanking region that binds the Dorsal factor activates the heterologous hsp70 core promoter but not the dpp core promoter. Thus, the dpp core promoter region may contribute to spatially regulated transcription both by interacting directly with spatially restricted activators and by modifying the activity of proteins bound to enhancer elements.


1997 ◽  
Vol 62 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Alasdair MacKenzie ◽  
Lorna Purdie ◽  
Duncan Davidson ◽  
Martin Collinson ◽  
Robert E. Hill

Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2673-2686 ◽  
Author(s):  
K.M. George ◽  
M.W. Leonard ◽  
M.E. Roth ◽  
K.H. Lieuw ◽  
D. Kioussis ◽  
...  

We describe the embryonic expression pattern as well as the cloning and initial transcriptional regulatory analysis of the murine (m) GATA-3 gene. In situ hybridization shows that mGATA-3 mRNA accumulation is temporally and spatially regulated during early development: although found most abundantly in the placenta prior to 10 days of embryogenesis, mGATA-3 expression becomes restricted to specific cells within the embryonic central nervous system (in the mesencephalon, diencephalon, pons and inner ear) later in gestation. GATA-3 also shows a restricted expression pattern in the peripheral nervous system, including terminally differentiating cells in the cranial and sympathetic ganglia. In addition to this distinct pattern in the nervous system, mGATA-3 is also expressed in the embryonic kidney and the thymic rudiment, and further analysis showed that it is expressed throughout T lymphocyte differentiation. To begin to investigate how this complex gene expression pattern is elicited, cloning and transcriptional regulatory analyses of the mGATA-3 gene were initiated. At least two regulatory elements (one positive and one negative) appear to be required for appropriate tissue-restricted regulation after transfection of mGATA-3-directed reporter genes into cells that naturally express GATA-3 (T lymphocytes and neuroblastoma cells). Furthermore, this same region of the locus confers developmentally appropriate expression in transgenic mice, but only in a subset of the tissues that naturally express the gene.


2021 ◽  
Author(s):  
Noriyoshi Akiyama ◽  
Shoma Sato ◽  
Kentaro M. Tanaka ◽  
Takaomi Sakai ◽  
Aya Takahashi

AbstractThe spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns inDrosophilaare formed by the deposition of different pigments synthesized in the developing epidermis and the role ofcis-regulatory elements (CREs) of melanin biosynthesis pathway-related genes is well-characterized. These CREs typically exhibit modular arrangement in the regulatory region of the gene with each enhancer regulating a specific spatiotemporal expression of the gene. However, recent studies have suggested that multiple enhancers of a number of developmental genes as well as those ofyellow(involved in dark pigment synthesis) exhibit redundant activities. Here we report the redundant enhancer activities in thecis-regulatory region of another gene in the melanin biosynthesis pathway,ebony, in the developing epidermis ofDrosophila melanogaster. The evidence was obtained by introducing an approximately 1 kbp deletion at the endogenous primary epidermis enhancer (priEE) by genome editing. The effect of the priEE deletion on pigmentation and on the endogenous expression pattern of amCherry-taggedebonyallele was examined in the thoracic and abdominal segments. The expression level ofebonyin the priEE-deleted strains was similar to that of the control strain, indicating the presence of redundant enhancer activities that drive the broad expression ofebonyin the developing epidermis. Additionally, the priEE fragment contained a silencer that suppressesebonyexpression in the dorsal midline of the abdominal tergites, which is necessary for the development of the subgenusSophophora-specific dark pigmentation patterns along the midline. The endogenous expression pattern ofebonyin the priEE-deleted strains and the reporter assay examining the autonomous activity of the priEE fragment indicated that the silencer is involved in repressing the activities of both proximal and distant enhancers. These results suggest that multiple silencers are dispensable in the regulatory system of a relatively stable taxonomic character. The prevalence of other redundant enhancers and silencers in the genome can be investigated using a similar approach.Author summaryGenes are expressed at the right timing and place to give rise to diverse phenotypes. The spatiotemporal regulation is usually achieved through the coordinated activities of transcription-activating and transcription-repressing proteins that bind to the DNA sequences called enhancers and silencers, respectively, located near the target gene. Most studies identified the locations of enhancers by examining the ability of the sequence fragments to regulate the expression of fused reporters. Various short enhancers have been identified using this approach. This study employed an alternative approach in which the previously identified enhancer that regulates expression ofebony(a gene involved in body color formation) was deleted in a fruitfly,Drosophila melanogaster, using the genome-editing technique. The knockout of this enhancer did not affect the transcription level of the gene to a large extent. This indicated the presence of transcription-activating elements with redundant functions outside the deleted enhancer. Additionally, the transcription ofebonyat the midline of the abdomen, which is repressed in the normal flies, were derepressed in the enhancer-deleted flies, which indicated that the deleted enhancer fragment contained a silencer that negatively regulates multiple enhancer activities in a spatially restricted manner.


Development ◽  
2002 ◽  
Vol 129 (3) ◽  
pp. 563-572 ◽  
Author(s):  
Daniela Pistillo ◽  
Nick Skaer ◽  
Pat Simpson

In Drosophila the stereotyped arrangement of sensory bristles on the notum is determined by the tightly regulated control of transcription of the achaete-scute (ac-sc) genes which are expressed in small proneural clusters of cells at the sites of each future bristle. Expression relies on a series of discrete cis-regulatory elements present in the ac-sc gene complex that are the target of the transcriptional activators pannier (pnr) and the genes of the iroquois complex. Stereotyped bristle patterns are common among species of acalyptrate Schizophora such as Drosophila, and are thought to have derived from an ancestral pattern of four longitudinal rows extending the length of the scutum, through secondary loss of bristles. To investigate evolutionary changes in bristle patterns and ac-sc regulation by pnr, we have isolated homologues of these genes from Calliphora vicina, a species of calyptrate Schizophora separated from Drosophila by at least 100 million years. Calliphora vicina displays a pattern of four rows of bristles on the scutum resembling the postulated ancestral one. We find that sc in Calliphora is expressed in two longitudinal stripes on the medial scutum that prefigure the development of the rows of acrostichal and dorsocentral bristles. This result suggests that a stripe-like expression pattern of sc may be an ancestral feature and may have preceded the evolution of proneural clusters. The implications for the evolution of the cis-regulatory elements responsible for sc expression in the proneural clusters of Drosophila, and function of Pnr are discussed.


2020 ◽  
Vol 47 (5) ◽  
pp. 385-395
Author(s):  
Brigitte K. Flesch ◽  
Angelika Reil ◽  
Núria Nogués ◽  
Carme Canals ◽  
Peter Bugert ◽  
...  

Background: The human neutrophil antigen 2 (HNA-2), which is expressed on CD177, is undetectable in 3–5% of the normal population. Exposure of these HNA-2null individuals to HNA-2-positive cells can cause immunization and pro­duction of HNA-2 antibodies, which can induce immune neutropenia and transfusion-related acute lung injury. In HNA-2-positive individuals, neutrophils are divided into a CD177pos. and a CD177neg. subpopulation. The molecular background of HNA-2 deficiency and the bimodal expression pattern, however, are not completely decoded. Study Design: An international collaboration was conducted on the genetic analysis of HNA-2-phenotyped blood samples, including HNA-2-deficient individuals, mothers, and the respective children with neonatal immune neutropenia and regular blood donors. Results: From a total of 54 HNA-2null individuals, 43 were homozygous for the CD177*787A>T substitution. Six carried the CD177*c.1291G>A single nucleotide polymorphism. All HNA-2-positive samples with >40% CD177pos. neutrophils carried the *787A wild-type allele, whereas a lower rate of CD177pos. neutrophils was preferentially associated with *c.787AT heterozygosity. Interestingly, only the *c.787A allele sequence was detected in complementary DNA (cDNA) sequence analysis carried out on all *c.787AT heterozygous individuals. However, cDNA analysis after sorting of CD177pos. and CD177neg. neutrophil subsets from HNA-2-positive individuals showed identical sequences, which makes regulatory elements within the promoter unlikely to affect CD177 gene transcription in different CD177 neutrophil subsets. Conclusion: This comprehensive study clearly demonstrates the impact of single nucleotide polymorphisms on the expression of HNA-2 on the neutrophil surface but challenges the hypothesis of regulatory epigenetic effects being implicated in the bimodal CD177 expression pattern.


1990 ◽  
Vol 9 (11) ◽  
pp. 3795-3804 ◽  
Author(s):  
D. E. Coulter ◽  
E. A. Swaykus ◽  
M. A. Beran-Koehn ◽  
D. Goldberg ◽  
E. Wieschaus ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (5) ◽  
pp. 1533-1541 ◽  
Author(s):  
Ernesto Bockamp ◽  
Cecilia Antunes ◽  
Marko Maringer ◽  
Rosario Heck ◽  
Katrin Presser ◽  
...  

The stem cell leukemia gene SCL, also known as TAL-1, encodes a basic helix-loop-helix transcription factor expressed in erythroid, myeloid, megakaryocytic, and hematopoietic stem cells. To be able to make use of the unique tissue-restricted and spatio-temporal expression pattern of the SCL gene, we have generated a knock-in mouse line containing the tTA-2S tetracycline transactivator under the control of SCL regulatory elements. Analysis of this mouse using different tetracycline-dependent reporter strains demonstrated that switchable transgene expression was restricted to erythrocytes, megakaryocytes, granulocytes, and, importantly, to the c-kit-expressing and lineage-negative cell fraction of the bone marrow. In addition, conditional transgene activation also was detected in a very minor population of endothelial cells and in the kidney. However, no activation of the reporter transgene was found in the brain of adult mice. These findings suggested that the expression of tetracycline-responsive reporter genes recapitulated the known endogenous expression pattern of SCL. Our data therefore demonstrate that exogenously inducible and reversible expression of selected transgenes in myeloid, megakaryocytic, erythroid, and c-kit-expressing lineage-negative bone marrow cells can be directed through SCL regulatory elements. The SCL knock-in mouse presented here represents a powerful tool for studying normal and malignant hematopoiesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document