scholarly journals Molecular and genetic analyses of lama, an evolutionarily conserved gene expressed in the precursors of the Drosophila first optic ganglion

1996 ◽  
Vol 59 (1) ◽  
pp. 11-27 ◽  
Author(s):  
Sharon E. Perez ◽  
Hermann Steller
Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 903-911 ◽  
Author(s):  
M.L. Winberg ◽  
S.E. Perez ◽  
H. Steller

We have examined the generation and development of glial cells in the first optic ganglion, the lamina, of Drosophila melanogaster. Previous work has shown that the growth of retinal axons into the developing optic lobes induces the terminal cell divisions that generate the lamina monopolar neurons. We investigated whether photoreceptor ingrowth also influences the development of lamina glial cells, using P element enhancer trap lines, genetic mosaics and birthdating analysis. Enhancer trap lines that mark the differentiating lamina glial cells were found to require retinal innervation for expression. In mutants with only a few photoreceptors, only the few glial cells near ingrowing axons expressed the marker. Genetic mosaic analysis indicates that the lamina neurons and glial cells are readily separable, suggesting that these are derived from distinct lineages. Additionally, BrdU pulse-chase experiments showed that the cell divisions that produce lamina glia, unlike those producing lamina neurons, are not spatially or temporally correlated with the retinal axon ingrowth. Finally, in mutants lacking photoreceptors, cell divisions in the glial lineage appeared normal. We conclude that the lamina glial cells derive from a lineage that is distinct from that of the L-neurons, that glia are generated independently of photoreceptor input, and that completion of the terminal glial differentiation program depends, directly or indirectly, on an inductive signal from photoreceptor axons.


2020 ◽  
Vol 117 (17) ◽  
pp. 9356-9364 ◽  
Author(s):  
D. Eric Dollins ◽  
Wenli Bai ◽  
Peter C. Fridy ◽  
James C. Otto ◽  
Julie L. Neubauer ◽  
...  

Inositol diphosphates (PP-IPs), also known as inositol pyrophosphates, are high-energy cellular signaling codes involved in nutrient and regulatory responses. We report that the evolutionarily conserved gene product, Vip1, possesses autonomous kinase and pyrophosphatase domains capable of synthesis and destruction of D-1 PP-IPs. Our studies provide atomic-resolution structures of the PP-IP products and unequivocally define that the Vip1 gene product is a highly selective 1-kinase and 1-pyrophosphatase enzyme whose activities arise through distinct active sites. Kinetic analyses of kinase and pyrophosphatase parameters are consistent with Vip1 evolving to modulate levels of 1-IP7 and 1,5-IP8. Individual perturbations in kinase and pyrophosphatase activities in cells result in differential effects on vacuolar morphology and osmotic responses. Analogous to the dual-functional key energy metabolism regulator, phosphofructokinase 2, Vip1 is a kinase and pyrophosphatase switch whose 1-PP-IP products play an important role in a cellular adaptation.


2004 ◽  
Vol 318 (2) ◽  
pp. 429-437 ◽  
Author(s):  
Birgit Greiner ◽  
Willi A. Ribi ◽  
William T. Wcislo ◽  
Eric J. Warrant

Science ◽  
2018 ◽  
Vol 359 (6379) ◽  
pp. 1047-1050 ◽  
Author(s):  
Yu-Hsiang Tu ◽  
Alexander J. Cooper ◽  
Bochuan Teng ◽  
Rui B. Chang ◽  
Daniel J. Artiga ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32501 ◽  
Author(s):  
Ivan D. Schlatter ◽  
Maria Meira ◽  
Vanessa Ueberschlag ◽  
Dominic Hoepfner ◽  
Rao Movva ◽  
...  

2003 ◽  
Vol 69 (3) ◽  
pp. 861-867 ◽  
Author(s):  
Xuemei Wu ◽  
Pei Wang ◽  
Christopher A. Brown ◽  
Carolyn A. Zilinski ◽  
Martin M. Matzuk

1972 ◽  
Vol 59 (5) ◽  
pp. 534-558 ◽  
Author(s):  
Gilbert D. McCann ◽  
David W. Arnett

Spectral and polarization sensitivity measurements were made at several levels (retina, first and third optic ganglion, cervical connective, behavior) of the dipteran visual nervous system. At all levels, it was possible to reveal contributions from the retinular cell subsystem cells 1 to 6 or the retinular cell subsystem cells 7 and 8 or both. Only retinular cells 1 to 6 were directly studied, and all possessed the same spectral sensitivity characterized by two approximately equal sensitivity peaks at 350 and 480 nm. All units of both the sustaining and on-off variety in the first optic ganglion exhibited the same spectral sensitivity as that of retinular cells 1 to 6. It was possible to demonstrate for motion detection and optomotor responses two different spectral sensitivities depending upon the spatial wavelength of the stimulus. For long spatial wavelengths, the spectral sensitivity agreed with retinular cells 1 to 6; however, the spectral sensitivity at short spatial wavelengths was characterized by a single peak at 465 nm reflecting contributions from the (7, 8) subsystem. Although the two subsystems exhibited different spectral sensitivities, the difference was small and no indication of color discrimination mechanisms was observed. Although all retinular cells 1 to 6 exhibited a preferred polarization plane, sustaining and on-off units did not. Likewise, motion detection and optomotor responses were insensitive to the polarization plane for long spatial wavelength stimuli; however, sensitivity to select polarization planes was observed for short spatial wavelengths.


Sign in / Sign up

Export Citation Format

Share Document