scholarly journals Vip1 is a kinase and pyrophosphatase switch that regulates inositol diphosphate signaling

2020 ◽  
Vol 117 (17) ◽  
pp. 9356-9364 ◽  
Author(s):  
D. Eric Dollins ◽  
Wenli Bai ◽  
Peter C. Fridy ◽  
James C. Otto ◽  
Julie L. Neubauer ◽  
...  

Inositol diphosphates (PP-IPs), also known as inositol pyrophosphates, are high-energy cellular signaling codes involved in nutrient and regulatory responses. We report that the evolutionarily conserved gene product, Vip1, possesses autonomous kinase and pyrophosphatase domains capable of synthesis and destruction of D-1 PP-IPs. Our studies provide atomic-resolution structures of the PP-IP products and unequivocally define that the Vip1 gene product is a highly selective 1-kinase and 1-pyrophosphatase enzyme whose activities arise through distinct active sites. Kinetic analyses of kinase and pyrophosphatase parameters are consistent with Vip1 evolving to modulate levels of 1-IP7 and 1,5-IP8. Individual perturbations in kinase and pyrophosphatase activities in cells result in differential effects on vacuolar morphology and osmotic responses. Analogous to the dual-functional key energy metabolism regulator, phosphofructokinase 2, Vip1 is a kinase and pyrophosphatase switch whose 1-PP-IP products play an important role in a cellular adaptation.

1989 ◽  
Vol 9 (12) ◽  
pp. 5722-5725 ◽  
Author(s):  
T Pawson ◽  
K Letwin ◽  
T Lee ◽  
Q L Hao ◽  
N Heisterkamp ◽  
...  

We have recently isolated human and rat cDNAs (designated FER and flk, respectively) which encode nonreceptor protein-tyrosine kinases which are very similar to one another and related in sequence and domain structure to the c-fps/fes gene product. We show that FER and flk are human and rat counterparts of an evolutionarily conserved gene, hereafter termed FER regardless of species. The human and rat FER genes encode a widely expressed 94-kilodalton protein-tyrosine kinase which is antigenically related to the fps/fes protein-tyrosine kinase. The structural and antigenic similarities between the FER and fps/fes proteins suggest that they are members of a new family of nonreceptor protein-tyrosine kinases.


1989 ◽  
Vol 9 (12) ◽  
pp. 5722-5725
Author(s):  
T Pawson ◽  
K Letwin ◽  
T Lee ◽  
Q L Hao ◽  
N Heisterkamp ◽  
...  

We have recently isolated human and rat cDNAs (designated FER and flk, respectively) which encode nonreceptor protein-tyrosine kinases which are very similar to one another and related in sequence and domain structure to the c-fps/fes gene product. We show that FER and flk are human and rat counterparts of an evolutionarily conserved gene, hereafter termed FER regardless of species. The human and rat FER genes encode a widely expressed 94-kilodalton protein-tyrosine kinase which is antigenically related to the fps/fes protein-tyrosine kinase. The structural and antigenic similarities between the FER and fps/fes proteins suggest that they are members of a new family of nonreceptor protein-tyrosine kinases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenyan Du ◽  
Kangqi Shen ◽  
Yuruo Qi ◽  
Wei Gao ◽  
Mengli Tao ◽  
...  

AbstractRechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanan Shi ◽  
Jingjing Zhu ◽  
Yan Xu ◽  
Xiaozhao Tang ◽  
Zushun Yang ◽  
...  

Abstract Background Protein lysine malonylation, a novel post-translational modification (PTM), has been recently linked with energy metabolism in bacteria. Staphylococcus aureus is the third most important foodborne pathogen worldwide. Nonetheless, substrates and biological roles of malonylation are still poorly understood in this pathogen. Results Using anti-malonyl-lysine antibody enrichment and high-resolution LC-MS/MS analysis, 440 lysine-malonylated sites were identified in 281 proteins of S. aureus strain. The frequency of valine in position − 1 and alanine at + 2 and + 4 positions was high. KEGG pathway analysis showed that six categories were highly enriched, including ribosome, glycolysis/gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), valine, leucine, isoleucine degradation, and aminoacyl-tRNA biosynthesis. In total, 31 malonylated sites in S. aureus shared homology with lysine-malonylated sites previously identified in E. coli, indicating malonylated proteins are highly conserved among bacteria. Key rate-limiting enzymes in central carbon metabolic pathways were also found to be malonylated in S. aureus, namely pyruvate kinase (PYK), 6-phosphofructokinase, phosphoglycerate kinase, dihydrolipoyl dehydrogenase, and F1F0-ATP synthase. Notably, malonylation sites were found at or near protein active sites, including KH domain protein, thioredoxin, alanine dehydrogenase (ALD), dihydrolipoyl dehydrogenase (LpdA), pyruvate oxidase CidC, and catabolite control protein A (CcpA), thus suggesting that lysine malonylation may affect the activity of such enzymes. Conclusions Data presented herein expand the current knowledge on lysine malonylation in prokaryotes and indicate the potential roles of protein malonylation in bacterial physiology and metabolism.


Blood ◽  
1967 ◽  
Vol 30 (2) ◽  
pp. 151-167 ◽  
Author(s):  
JOHN LASZLO ◽  
Clarence Ellis

Abstract 1. Leukocytes taken from patients having acute lymphocytic leukemia and chronic lymphocytic leukemia are characterized by high respiratory rates and low to absent aerobic glycolysis. Leukemic granulocytes have low respiratory rates and high aerobic glycolysis. 2. Lymphocytes and granulocytes have the capacity for high glycolytic rates under anaerobic conditions. 3. Lymphocyte respiration is independent of glucose concentration in contrast to granulocyte respiration. 4. High energy phosphate levels of lymphocytes and granulocytes are unchanged if these cells are incubated aerobically, either with or without glucose, or anaerobically in the presence of glucose. 5. Aerobic glycolysis can be induced in lymphocytes by the addition of foreign plasma. Foreign plasma may also alter granulocyte metabolism.


2011 ◽  
Vol 178-179 ◽  
pp. 421-426
Author(s):  
Jan Vobecký ◽  
Volodymyr Komarnitskyy ◽  
Vít Záhlava ◽  
Pavel Hazdra

Low-temperature diffusion of Cr, Mo, Ni, Pd, Pt, and V in silicon diodes is compared in the range 450 - 800 oC. Before the diffusion, the diodes were implanted with high-energy He2+ to assess, if the radiation defects enhance the concentration of metal atoms at electrically active sites and what is the application potential for carrier lifetime control. The devices were characterized using AES, XPS, DLTS, OCVD carrier lifetime and diode electrical parameters. The metal atoms are divided into two groups. The Pt, Pd and V form deep levels in increased extent at the presence of radiation defects above 600 oC, which reduces the excess carrier lifetime. It is shown as a special case that the co-diffusion of Ni and V from a NiV surface layer results fully in the concentration enhancement of the V atoms. The enhancement of the acceptor level V-/0 (EC 0.203 eV) and donor level V0/+ (EC 0.442 eV) resembles the behavior of substitutional Pts. The second group is represented by the Mo and Cr. They easily form oxides, which can make their diffusion into a bulk more difficult or impossible. Only a slight enhancement of the Cr-related deep levels by the radiation defects has been found above 700 oC.


Sign in / Sign up

Export Citation Format

Share Document