Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash

1994 ◽  
Vol 4 (1-2) ◽  
pp. 65-73 ◽  
Author(s):  
Chien Yi Wang
Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2746
Author(s):  
Qian Feng ◽  
Sen Yang ◽  
Yijia Wang ◽  
Lu Lu ◽  
Mintao Sun ◽  
...  

Cold stress is a limiting factor to the growth and development of cucumber in the temperate regions; hence, improving the crop’s tolerance to low temperature is highly pertinent. The regulation of low-temperature tolerance with exogenous ABA and CaCl2 was investigated in the cucumber variety Zhongnong 26. Under low-temperature conditions (day/night 12/12 h at 5 °C), seedlings were sprayed with a single application of ABA, CaCl2, or a combination of both. Our analysis included a calculated chilling injury index, malondialdehyde (MDA) content, relative electrical conductivity, antioxidant enzyme activities (SOD, CAT, and APX), leaf tissue structure, and expression of cold-related genes by transcriptome sequencing. Compared with the water control treatment, the combined ABA + CaCl2 treatment significantly improved the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of the seedlings by 34.47%, 59.66%, and 118.80%, respectively (p < 0.05), and significantly reduced the chilling injury index, relative electrical conductivity, and MDA content, by 89.47%, 62.17%, and 44.55%, respectively (p < 0.05). Transcriptome analysis showed that compared with the water control treatment, 3442 genes were differentially expressed for the combined treatment, 3921 for the ABA treatment, and 1333 for the CaCl2 treatment. KEGG enrichment analysis for both the ABA and combined ABA + CaCl2 treatments (as compared to the water control) showed that it mainly involves genes of the photosynthesis pathway and metabolic pathways. Differentially expressed genes following the CaCl2 treatment were mainly involved in plant hormone signal transduction, plant–pathogen interaction, MAPK signaling pathway–plant, phenylpropanoid biosynthesis, and circadian rhythm–plant. qRT-PCR analysis and RNA-seq results showed a consistent trend in variation of differential gene expression. Overall, this study demonstrated that although all three treatments provided some protection, the combined treatment of ABA (35 mg/L) with CaCl2 (500 mg/L) afforded the best results. A combined ABA + CaCl2 treatment can effectively alleviate cold-stress damage to cucumber seedlings by inducing physiological changes in photosynthesis and metabolism, and provides a theoretical basis and technical support for the application of exogenous ABA and CaCl2 for low-temperature protection of cucumber seedlings.


1991 ◽  
Vol 116 (6) ◽  
pp. 1007-1012 ◽  
Author(s):  
Susan Lurie ◽  
Joshua D. Klein

Mature-green tomato (Lycopersicon esculentum Mill.) fruit, when kept for 3 days at 36, 38, or 40C before being kept at 2C for 3 weeks, did not develop chilling injury, while unheated fruit placed at 2C immediately after harvest did. When removed from 2 to 20C, the heated tomatoes had lower levels of K+ leakage and a higher phospholipid content than unheated fruit. Sterol levels were similar in heated and unheated fruit while malonaldehyde concentration was higher in heated fruit at transfer to 20C. The unheated tomatoes remained green, and brown areas developed under the peel; their rate of CO2 evolution was high and decreased sharply, while ethylene evolution was low and increased at 20C. In contrast, the heat-treated tomatoes ripened normally although more slowly than freshly harvested tomatoes: color developed normally, chlorophyll disappeared, and lycopene content increased, CO2, and ethylene evolution increased to a climacteric peak and K+ leakage increased with time. During prestorage heating, heat-stress ethylene production was inhibited, protein synthesis was depressed, and heat-shock proteins accumulated. There appears to be a relationship between the “heat shock response” and the protection of tomato fruit from low-temperature injury.


2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


1964 ◽  
Vol 17 (1) ◽  
pp. 147 ◽  
Author(s):  
TL Lewis ◽  
M Workman

Exposure to O�C for 4 weeks caused a threefold increase in cell membrnno permeability of mature-green tomato fruits (susceptible to chilling injury) hut had no effect on that of cabbage leaves (not susceptible). While tomato fruits chilled for 12 days lost two-thirds of their capacity to esterify phosphate at 20�0, a steady rise in this capacity occurred during chilling of cabbage leaves for 5 weeks. In tomato fruits the rate of phosphate esterification at the chilling temperature fell in 12 days to about one-half of the rate at the commencement of chilling .. It is suggested that the characteristic symptoms of chilling injury in mature-green tomato fruits, viz. increased susceptibility to fungal attack and loss of the capacity to ripen normally. may result from an energy deficit caused by a chilling. induced reduction in the phosphorylative capacity of the tissue.


2020 ◽  
Vol 12 (18) ◽  
pp. 7547 ◽  
Author(s):  
Rabia Kanwal ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Irrum Babu ◽  
Zarina Yasmin ◽  
...  

Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.


2016 ◽  
Vol 29 (3) ◽  
pp. 629-641 ◽  
Author(s):  
JOÃO ALISON ALVES OLIVEIRA ◽  
LUIZ CARLOS CHAMHUM SALOMÃO ◽  
DALMO LOPES DE SIQUEIRA ◽  
PAULO ROBERTO CECON

ABSTRACT The objective of this work was to evaluate the tolerance of fruits of different banana cultivars to low temperature storages. Fruits of the cultivars Nanicão (AAA), Prata (AAB), Vitória (AAAB), Maçã (AAB) and Caipira (AAA) were used. Clusters of three fruits were kept in cold storage for 7, 14 and 21 days, with average temperature of 10.53±0.37°C and relative humidity of 85%. Subsequently, the clusters were transferred to temperatures of 22±0.39°C and evaluated for 16 days. The fruits of all cultivars remained green after 21 days of storage at 10.53±0.37°C. Fruits of the cultivar Nanicão did not completely ripened after transferred to the 22°C storage, when stored for 7 days at low temperature. These fruits were firmer, with green peel and low soluble solids and titratable acidity. The fruits of all cultivars complete the ripening when transferred to room temperature after 21 days of cold storage. Chilling injuries increased with cold storage time in all cultivars. The cultivars Nanicão, Caipira and Maçã had more symptoms of chilling injury, while Prata and Vitória were more tolerant to the cold storage (10.53°C) for up to 21 days, showing normal ripening after transferred to the 22±0.39°C storage.


2020 ◽  
pp. 108201322094046
Author(s):  
Sakineh Ehteshami ◽  
Farzin Abdollahi ◽  
Asghar Ramezanian ◽  
Mahsa Rahimzadeh ◽  
Abdolmajid Mirzaalian Dastjerdi

Pomegranate is a subtropical and chilling sensitive fruit. In this study, the effects of malic acid (50 and 100 mM) and oxalic acid (5 and 10 mM) on quality properties of pomegranate during cold storage (2 ℃) were investigated. The lowest weight loss was observed in fruit treated with 50 mM malic acid. Malic acid had positive effects on color parameters ( L*, a*, and b*) of pomegranate at low temperature. Organic acid treatments reduced chilling injury, malondialdehyde, and hydrogen peroxide and increased catalase activity. The lowest activity of polyphenol oxidase and peroxidase was observed in 5 mM oxalic acid-treated fruit. On the other hand, fruit treated with 50 mM malic acid showed the maximum ascorbic acid and citric acid content. The most antioxidant activity was found in fruit treated with 5 mM oxalic acid and 50 mM malic acid. Also, all treatments except 10 mM oxalic acid and 100 mM malic acid resulted in higher titratable acidity than control fruit. Overall, 50 mM malic acid and 5 mM oxalic acid were the most effective for preserving the quality of pomegranate fruit at low temperature.


HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1563-1568
Author(s):  
Mikal E. Saltveit

Holding harvested asparagus spears at non-freezing temperatures below 2.5 °C induces chilling injury (CI), a physiological disorder that reduces quality and shelf life. CI can be quantified by subjective visual parameters, or by objective measurements of the increased rate of ion leakage from excised tissue into an isotonic bathing solution. The rate of ion leakage from apical (2–3 cm), middle (9–10 cm), and basal (15–16 cm) segments excised from 18-cm asparagus spears increased after 7 days of chilling at 2.5 °C. The increase continued and was similar for middle and basal segments after 14 days of chilling, but more pronounced from apical segments. Various heat-shock treatments (i.e., combinations of temperature and duration) decreased the chilling-induced increase in ion leakage from these 1-cm stem segments. Although the chilling tolerance of all spear segments was increased by specific heat-shock treatments, the optimal temperature and duration of exposure varied among the segments; some treatments that were effective in segments from one location were either ineffective or damaging to segments from another location. As the apical half of the whole spear is the predominant culinary portion and contains the most chilling sensitive tissue, heat-shock treatments that would increase the chilling tolerance of the upper half of whole spears were selected for further study. These heat-shock treatments were applied to freshly harvested whole 18-cm asparagus spears that were chilled at 2.5 °C for 14 days. Two treatment combinations (i.e., 45 °C for 4.0 ± 0.6 minutes or 50 °C for 2.9 ± 0.8 minutes) were identified that maintained the highest level of quality and significantly reduced the rate of chilling-induced ion leakage.


Sign in / Sign up

Export Citation Format

Share Document