The growth of Ni5Al3 in L10 martensite studied by in situ transmission electron microscopy and high resolution electron microscopy

1995 ◽  
Vol 221 (1-2) ◽  
pp. 227-234 ◽  
Author(s):  
D. Schryvers ◽  
Y. Ma
1990 ◽  
Vol 183 ◽  
Author(s):  
C. P. Burmester ◽  
S. Quong ◽  
L. T. Wille ◽  
R. Gronsky ◽  
B. T. Ahn ◽  
...  

AbstractHigh resolution electron microscopy is used to investigate the effect of electron irradiation induced oxygen loss on the states of partial order in YBa2Cu3Oz. Contrast effects visible in the [001] zone image as a result of the degree of the out-of-plane correlation of these ordered states are investigated. Using statistical simulations to aid in the analysis of the HREM images, an interpretation based on a kinetically limited evolution of the variation of long range [001] ordering is proposed.


1993 ◽  
Vol 8 (5) ◽  
pp. 1019-1027 ◽  
Author(s):  
F. Hakkens ◽  
A. De Veirman ◽  
W. Coene ◽  
Broeder F.J.A. den

The structure of Co/Pd and Co/Au (111) multilayers is studied using transmission electron microscopy and high resolution electron microscopy. We focused on microstructure, atomic stacking (especially at the interfaces), and coherency, as these are structural properties that have considerable magnetic effects. A columnar structure with a strong curvature of the multilayer influenced by substrate temperature during growth is observed. High resolution imaging shows numerous steps at the interfaces of the multilayer structure and the presence of misfit dislocations. In bright-field images, periodic contrast fringes are observed at these interfaces as the result of moiré interference. These moiré fringes are used to study the misfit relaxation at the interfaces, whereas electron diffraction gives the average relaxation over the whole layer. Both measurements determined that, for Co/Pd as well as Co/Au multilayers, 80–85% of the misfit is relaxed and 20–15% remains in the form of strain, independent of the Co layer thickness in the regime studied.


MRS Bulletin ◽  
1994 ◽  
Vol 19 (6) ◽  
pp. 26-31 ◽  
Author(s):  
Robert Sinclair

Processing has always been a key component in the development of new materials. Basic scientific understanding of the reactions and transformations that occur has obvious importance in guiding progress. Invaluable insight can be provided by observing the changes during processing, especially at high magnification by in situ microscopy. Now that this can be achieved at the atomic level by using high-resolution electron microscopy (HREM), atomic behavior can be seen directly. Accordingly, many deductions concerning reactions in materials at the atomic scale are possible.The purpose of this article is to illustrate the level reached by in situ HREM. The essential procedure is to form a high-resolution image of a standard transmission electron microscope (TEM) sample and then to alter the structure by some means in a controlled manner, such as by heating. Continual recording on videotape allows subsequent detailed analysis of the behavior, even on a frame-by-frame (1/30 second) basis. The most obvious advantage is to follow the atomic rearrangements directly in real time. However, in addition, by continuous recording no stages in a reaction are missed, which can often occur in a series of conventional ex situ annealed samples because of the limited number of samples that can realistically be examined by HREM. One can be sure that the same reaction, in the same area, is being studied. Furthermore, by changing the temperature systematically, extremely precise kinetic measurements can be made (e.g., for activation energies and kinetic laws) and the whole extent of a material transformation can be investigated in one sample, something that would take months of work if studied conventionally. The information provided by in situ HREM is often unique and so it can become an important technique for fundamental materials investigations.


1998 ◽  
Vol 540 ◽  
Author(s):  
A. C. Nicol ◽  
M. L. Jenkins ◽  
N. Wanderka ◽  
C. Abromeit

AbstractThe stability of Cu precipitates in an Fe-1.3wt%Cu alloy under 300 keV Fe+ion irradiation has been investigated using transmission electron microscopy and high-resolution electron microscopy. The irradiations were carried out between room temperature and 550°C at displacement rates of 103 to 10−2 dpa(s)−1 to fluences of up to 30 dpa. Copper precipitates were found to keep their shape but decrease in size under all irradiation conditions. The results are discussed within the framework of a competitive process between irradiation induced ballistic destruction of precipitates by cascades and irradiation-enhanced precipitation.


1991 ◽  
Vol 238 ◽  
Author(s):  
Elsie C. Urdaneta ◽  
David E. Luzzi ◽  
Charles J. McMahon

ABSTRACTBismuth-induced grain boundary faceting in Cu-12 at ppm Bi polycrystals was studied using transmission electron microscopy (TEM). The population of faceted grain boundaries in samples aged at 600°C was observed to increase with heat treatment time from 15min to 24h; aging for 72h resulted in de-faceting, presumably due to loss of Bi from the specimen. The majority of completely faceted boundaries were found between grains with misorientation Σ=3. About 65% of the facets of these boundaries were found to lie parallel to crystal plane pairs of the type {111}1/{111]2- The significance of these findings in light of recent high resolution electron microscopy experiments is discussed.


Nanoscale ◽  
2017 ◽  
Vol 9 (30) ◽  
pp. 10684-10693 ◽  
Author(s):  
Ana R. Ribeiro ◽  
Arijita Mukherjee ◽  
Xuan Hu ◽  
Shayan Shafien ◽  
Reza Ghodsi ◽  
...  

In situliquid cell transmission electron microscopy and graphene liquid cells were used to investigate, thein situnano–bio interactions between titanium dioxide nanoparticles and biological medium.


1995 ◽  
Vol 382 ◽  
Author(s):  
S. J. Lloyd ◽  
R. E. Somekh ◽  
W. M. Stobbs

ABSTRACTIn-plane and out-of-plane lattice parameters were measured in a series of coherent Fe-Cu multilayers using non-axial high resolution electron microscopy (HREM). The results indicate that the multilayers are tetragonally distorted with the magnitude of the distortion varying with the thickness of the Fe component. These distortions preclude an understanding of the multilayer structure in terms of conventional elasticity theory. The breakdown of epitaxy for thicker Fe layers was also investigated and it was found that the b.c.c. Fe grew with [110] parallel to [001] of the coherent f.c.c. multilayer.


Sign in / Sign up

Export Citation Format

Share Document