Density operator formalism for the description of coherence evolution of a homonuclear two-spin system in rotating solids

1994 ◽  
Vol 3 (5) ◽  
pp. 287-292 ◽  
Author(s):  
Jinyuan Zhou ◽  
Chaohui Ye
Author(s):  
Richard Healey

If a quantum state is prescriptive then what state should an agent assign, what expectations does this justify, and what are the grounds for those expectations? I address these questions and introduce a third important idea—decoherence. A subsystem of a system assigned an entangled state may be assigned a mixed state represented by a density operator. Quantum state assignment is an objective matter, but the correct assignment must be relativized to the physical situation of an actual or hypothetical agent for whom its prescription offers good advice, since differently situated agents have access to different information. However this situation is described, it is true, empirically significant magnitude claims that make the description correct, while others provide the objective grounds for the agent’s expectations. Quantum models of environmental decoherence certify the empirical significance of these magnitude claims while also licensing application of the Born rule to others without mentioning measurement.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrea Cavaglià ◽  
Nikolay Gromov ◽  
Fedor Levkovich-Maslyuk

Abstract The major simplification in a number of quantum integrable systems is the existence of special coordinates in which the eigenstates take a factorised form. Despite many years of studies, the basis realising the separation of variables (SoV) remains unknown in $$ \mathcal{N} $$ N = 4 SYM and similar models, even though it is widely believed they are integrable. In this paper we initiate the SoV approach for observables with nontrivial coupling dependence in a close cousin of $$ \mathcal{N} $$ N = 4 SYM — the fishnet 4D CFT. We develop the functional SoV formalism in this theory, which allows us to compute non-perturbatively some nontrivial observables in a form suitable for numerical evaluation. We present some applications of these methods. In particular, we discuss the possible SoV structure of the one-point correlators in presence of a defect, and write down a SoV-type expression for diagonal OPE coefficients involving an arbitrary state and the Lagrangian density operator. We believe that many of the findings of this paper can be applied in the $$ \mathcal{N} $$ N = 4 SYM case, as we speculate in the last part of the article.


Author(s):  
Supratik Dasgupta ◽  
Philipp Komissinskiy ◽  
Pavan Nukala ◽  
Iliya Radulov ◽  
Andrei Rogalev ◽  
...  

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Georgy Y. Prokhorov ◽  
Oleg V. Teryaev ◽  
Valentin I. Zakharov

2007 ◽  
Vol 14 (4) ◽  
pp. 661-671
Author(s):  
Jacek Hejduk ◽  
Anna Loranty

Abstract This paper contains some results connected with topologies generated by lower and semi-lower density operators. We show that in some measurable spaces (𝑋, 𝑆, 𝐽) there exists a semi-lower density operator which does not generate a topology. We investigate some properties of nowhere dense sets, meager sets and σ-algebras of sets having the Baire property, associated with the topology generated by a semi-lower density operator.


Sign in / Sign up

Export Citation Format

Share Document