Hydrolases in the organic matter fractions of sewage sludge: Changes with composting

1993 ◽  
Vol 45 (1) ◽  
pp. 47-52 ◽  
Author(s):  
C. García ◽  
T. Hernández ◽  
F. Costa ◽  
B. Ceccanti ◽  
A. Ganni
2004 ◽  
Vol 68 (3) ◽  
pp. 950 ◽  
Author(s):  
Marietta E. Echeverría ◽  
Daniel Markewitz ◽  
Lawrence A. Morris ◽  
Ronald L. Hendrick

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 628
Author(s):  
Hassan E. Abd Elsalam ◽  
Mohamed E. El- Sharnouby ◽  
Abdallah E. Mohamed ◽  
Bassem M. Raafat ◽  
Eman H. El-Gamal

Sewage sludge is an effective fertilizer in many soil types. When applied as an amendment, sludge introduces, in addition to organic matter, plant nutrients into the soil. When applied for cropland as a fertilizer, the mass loading of sewage sludge is customarily determined by inputs of N and/or P required to support optimal plant growth and a successful harvest. This study aims to examine the changes in organic matter contents and nitrogen forms in sludge-amended soils, as well as the growth of corn and faba bean plants. The main results indicated that there were higher responses to the corn and faba bean yields when sludge was added. Levels of organic carbon in soil were higher after maize harvest and decreased significantly after harvesting of beans, and were higher in sludge amended soils than unmodified soils, indicating the residual effect of sludge in soil. NO3−-N concentrations were generally higher in the soil after maize harvest than during the plant growth period, but this trend was not apparent in bean soil. The amounts of NH4+-N were close in the soil during the growth period or after the maize harvest, while they were higher in the soil after the bean harvest than they were during the growth period. Total nitrogen amounts were statistically higher in the soil during the growth period than those collected after the corn harvest, while they were approximately close in the bean soil. The total nitrogen amount in corn and bean leaves increased significantly in plants grown on modified sludge soil. There were no significant differences in the total nitrogen levels of the maize and beans planted on the treated soil.


Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Søren M Kristiansen ◽  
Kristian Dalsgaard ◽  
Mads K Holst ◽  
Bent Aaby ◽  
Jan Heinemeier

Dating of prehistoric anthropogenic earthworks requires either excavation for archaeological artifacts or macroscopic organic matter suitable for 14C analysis. Yet, the former, in many cases, is undesirable and the latter is difficult to obtain. Here we present a soil science procedure, which has the potential to overcome these problems. It includes careful sampling of buried former soil surfaces, acid-alkali-acid fractionation of soil organic matter (SOM), and subsequent 14C AMS dating. To test the procedure, soil from one of the largest known burial mounds in Scandinavia, Hohøj, and 9 other Danish burial mounds were sampled. The 14C dates from extracted SOM fractions were compared to reference ages obtained by other methods. We show that humic acid fractions in 7 of the 10 mounds had the same age as the reference, or were, at maximum, 280 yr older than the reference ages. The best age estimates were derived from an organic-rich layer from the upper cm of buried soil or sod. Differences among SOM fraction ages probably indicate the reliability of the dating. Hohøj dated to approximately 1400 BC and, thus, was up to 500 yr older than other dated Scandinavian mounds of comparable size. The remaining investigated burial mounds were dated to between 1700 and 1250 BC. We conclude that combined sampling of buried soil surfaces, SOM fractionation, and 14C analysis allows for dating of archaeological earthworks when minimal disturbance is required, or if no macroscopic organic remains are found.


Sign in / Sign up

Export Citation Format

Share Document