Programmed cell death in rat placentas: DNA laddering and expression of apoptosis related genes

1995 ◽  
Vol 2 (2) ◽  
pp. 284
Author(s):  
M THIET
1997 ◽  
Vol 82 (9) ◽  
pp. 3148-3155
Author(s):  
Wei Yuan ◽  
Linda C. Giudice

Abstract Although extensive investigation on follicular apoptosis (programmed cell death) has been conducted in the infraprimate ovary, there is little information regarding apoptosis and its relationship to follicular status in the human. In this study, apoptosis was investigated in 116 human ovarian follicles (primordial to dominant) and 5 corpora lutea from a total of 27 premenopausal women. Follicles and corpora lutea were evaluated for the presence of DNA fragmentation, characteristic of apoptosis, by two methods: in situ hybridization using 3′ end-labeling of DNA with digoxigenin-labeled nucleotides and subsequent digoxigenin antibody and peroxidase staining, and/or biochemical analysis of low molecular weight DNA laddering. Follicle functional status was evaluated by determining follicle sizes and follicular fluid androgen/estrogen (A/E) ratios. No apoptosis was observed in 67 primordial, primary, or secondary follicles. Positive staining for DNA fragmentation was found in a few granulosa cells in 0.1- to 2-mm follicles, whereas abundant staining in granulosa was detected in 2.1- to 9.9-mm follicles. In contrast, no DNA fragmentation was detected in dominant follicles (10–16 mm). The frequency of apoptosis in follicles was calculated to be 37% in 0.1- to 2-mm follicles, 50% in 2.1- to 5-mm follicles, and 27% in 5.1- to 9.9-mm follicles. Abundant low molecular weight DNA laddering was only found in androgen-dominant follicles and not in estrogen-dominant follicles. Positive staining for DNA fragmentation and low molecular weight DNA laddering were observed in degenerating but not healthy-appearing corpora lutea. In the former, DNA fragmentation was found primarily in large luteal cells. These data suggest that follicular atresia in human ovary results from normal programmed cell death and primarily occurs in the granulosa cell layers of the early antral and <10-mm antral follicles primarily. Furthermore, because apoptosis occurs as early as the 200-mm stage, follicle selection may begin as early as the initial formation of the antrum. The results also suggest that degeneration of the corpus luteum occurs by apoptotic mechanisms.


2004 ◽  
Vol 181 (1) ◽  
pp. 169-178 ◽  
Author(s):  
FF Rommerts ◽  
L Kuhne ◽  
GW van Cappellen ◽  
DM Stocco ◽  
SR King ◽  
...  

The mechanism by which ethane 1,2-dimethanesulfonate (EDS) selectively kills Leydig cells is poorly understood. To characterize further the cell-specific actions of EDS, we studied biochemical and morphological changes during apoptosis in different Leydig cell and non-steroidogenic cell models.Rat testicular and H540 tumor Leydig cells were killed by 1-2 mM EDS, whereas 20 mM EDS were required for MA-10 cells. This higher concentration of EDS was also necessary for activation of apoptosis in non-steroidogenic Chinese hamster ovary cells, whereas COS-1 monkey kidney cells were resistant. These variable effects of EDS on apoptosis were independent of new protein synthesis and, interestingly, could be delayed by co-incubation with dibutyrl cyclic AMP. Along with cell death, we also observed chromosomal fragmentation and other hallmarks indicative of apoptosis as evidenced by DNA laddering and fluorescent microscopy. Time-lapse photography with a confocal microscope showed that the time of onset, duration and even the sequence of apoptotic events between individual H540 cells was heterogeneous. When the dose of EDS was gradually increased from 2 to 10 mM, the proportion of cells showing normal apoptotic features gradually decreased. Intriguingly, treatment with 10 mM EDS did not result in death for most cells and was marked by an absence of DNA laddering and ultrastructural features of apoptosis and necrosis. However, incubation with 20 mM EDS resulted in necrosis.These results demonstrated that the effects of EDS on cell survival are not specific to Leydig cells, that different cell types have different sensitivities to EDS and that stimulation of the cAMP pathway may mitigate EDS action. The data obtained with H540 cells further revealed that EDS can induce two types of programmed cell death.


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


2019 ◽  
Author(s):  
P. Seyed Mir ◽  
A.-S. Berghoff ◽  
M. Preusser ◽  
G. Ricken ◽  
J. Riedl ◽  
...  

2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


Author(s):  
Luciano Carotenuto ◽  
Vincenza Pace ◽  
Dina Bellizzi ◽  
Giovanna De Benedictis

Sign in / Sign up

Export Citation Format

Share Document