Antigen-specific activation of B cells in vitro after recruitment of T cell help with superantigen

1995 ◽  
Vol 1 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Sigurdur Ingvarsson ◽  
Ann Catrin Simonsson Lagerkvist ◽  
Christina Mårtensson ◽  
Ulrika Granberg ◽  
Peter Ifversen ◽  
...  
Keyword(s):  
T Cell ◽  
B Cells ◽  
2006 ◽  
Vol 203 (8) ◽  
pp. 1985-1998 ◽  
Author(s):  
Laura Mandik-Nayak ◽  
Jennifer Racz ◽  
Barry P. Sleckman ◽  
Paul M. Allen

In K/BxN mice, arthritis is induced by autoantibodies against glucose-6-phosphate-isomerase (GPI). To investigate B cell tolerance to GPI in nonautoimmune mice, we increased the GPI-reactive B cell frequency using a low affinity anti-GPI H chain transgene. Surprisingly, anti-GPI B cells were not tolerant to this ubiquitously expressed and circulating autoantigen. Instead, they were found in two functionally distinct compartments: an activated population in the splenic marginal zone (MZ) and an antigenically ignorant one in the recirculating follicular/lymph node (LN) pool. This difference in activation was due to increased autoantigen availability in the MZ. Importantly, the LN anti-GPI B cells remained functionally competent and could be induced to secrete autoantibodies in response to cognate T cell help in vitro and in vivo. Therefore, our study of low affinity autoreactive B cells reveals two distinct but potentially concurrent mechanisms for their activation, of which one is T cell dependent and the other is T cell independent.


1997 ◽  
Vol 186 (5) ◽  
pp. 631-643 ◽  
Author(s):  
Matthew C. Cook ◽  
Antony Basten ◽  
Barbara Fazekas de St. Groth

T-dependent B cell responses in the spleen are initiated in the outer periarteriolar lymphoid sheath (PALS) and culminate in the generation of proliferative foci and germinal center reactions. By pulsing anti–hen egg lysozyme (HEL) immunoglobulin transgenic (IgTg) B cells with various concentrations of HEL in vitro before adoptive transfer into normal recipients, it was shown that a critical number of B cell receptors (BCRs) must be ligated for B cells to undergo arrest in the outer PALS. T cell help was manipulated independently of the BCR stimulus by incubating B cells expressing the appropriate major histocompatibility complex class II antigen with a peptide recognized by CD4+ TCR Tg T cells. B cells which either failed to arrest in the outer PALS due to a subthreshold BCR stimulus, or arrested only transiently due to the brevity of the BCR stimulus, underwent an abortive response within the follicles when provided with T cell help. In contrast, naive B cells stimulated by a sustained, suprathreshold concentration of either foreign or self-antigen and given T cell help, proliferated in the outer PALS and then differentiated. Outer PALS arrest was not influenced by the nature of the B cells occupying the follicle, but appeared to be determined solely by the magnitude of BCR stimulation. Thus antigen-pulsed B cells arrested in the outer PALS in an identical manner irrespective of whether the follicles comprised a population of normal B cells with multiple specificities, a monoclonal naive population, or a monoclonal population of tolerant B cells. In addition, tolerant B cells were found to relocate from the follicles to the outer PALS of HEL/anti-HEL double Tg mice in which the concentration of soluble self-antigen had been increased by zinc feeding. Similarly, when anti-HEL Tg mice were crossed with a second HEL Tg strain expressing a higher concentration of soluble HEL, the tolerant anti-HEL Tg B cells were located constitutively in the outer PALS. Thus, subtle variations in antigen concentration resulted in dramatic changes in positioning of B cells within the spleen. A series of mixed bone marrow chimeras in which the effective antigen concentration was inversely related to the number of self-reactive B cells due to absorption of antigen by transgene-encoded membrane and secreted Ig, was used to confirm that alteration in B cell position previously attributed to changes in follicular composition could be explained on the basis of available antigen concentration, rather than the diversity of the repertoire.


1983 ◽  
Vol 158 (5) ◽  
pp. 1401-1414 ◽  
Author(s):  
J J Mond ◽  
G Norton ◽  
W E Paul ◽  
I Scher ◽  
F D Finkelman ◽  
...  
Keyword(s):  
T Cell ◽  
B Cells ◽  
B Cell ◽  
C3h Mice ◽  

Introduction of the CBA/N X-linked gene into C3H mice has resulted in the establishment of a new strain of mice that has profound immunologic defects. B cells from these mice show significantly impaired in vitro immune responses to the T cell-independent type 1 antigen trinitrophenyl-Brucella abortus (TNP-BA) as well as markedly reduced proliferative responses to a number of B cell mitogens when compared with the responses of the parental control mice. The in vivo response of such mice to TNP-BA is, however, comparable to that of CBA/N mice. Furthermore, B cells from C3.CBA/N mice are unresponsive to the plaque-forming cell enhancing effects induced by EL4-derived supernatant in the presence of TNP-BA, unlike B cells obtained from CBA/N or C3H/Hen mice whose responsiveness to TNP-BA can be significantly enhanced in the presence of EL4-derived supernatant. The model we have presented to best explain these results suggests that B cells from C3.CBA/N mice can be stimulated only under conditions in which they can interact with carrier-specific T cell help and not under conditions where factor-dependent responses are dominant.


2021 ◽  
Author(s):  
Christine S. Hopp ◽  
Jeff Skinner ◽  
Sarah L. Anzick ◽  
Christopher M. Tipton ◽  
Mary E. Peterson ◽  
...  

ABSTRACTSeveral infectious and autoimmune diseases are associated with an expansion of CD21-CD27- atypical B cells (atBCs). The function of atBCs remains unclear and few studies have investigated the biology of pathogen-specific atBCs during acute infection. Here, we performed longitudinal RNA-sequencing and flow cytometry analyses of Plasmodium falciparum (Pf)-specific B cells before and shortly after febrile malaria, with simultaneous analysis of influenza hemagglutinin (HA)-specific B cells as a comparator. B cell receptor-sequencing showed that Pf-specific atBCs, activated B cells (actBCs) and classical memory B cells share clonality and have comparable somatic hypermutation. In response to malaria, Pf-specific atBCs and actBCs expanded and upregulated molecules that mediate B-T cell interactions, suggesting that atBCs respond to T follicular helper (Tfh) cells. Indeed, in the presence of Tfh cells and Staphylococcal enterotoxin B, atBCs of malaria-exposed individuals differentiated into CD38+ antibody-secreting cells in vitro, suggesting that atBCs may actively contribute to humoral immunity to infectious pathogens.One Sentence SummaryThis study shows that atypical B cells actively respond to acute malaria and have the capacity to produce antibodies with T cell help.


1980 ◽  
Vol 151 (3) ◽  
pp. 681-694 ◽  
Author(s):  
R H Zubler ◽  
B Benacerraf ◽  
R N Germain

Feedback suppression of the primary humoral immune response to sheep erythrocytes (SRBC) in vitro was induced with cell-free supernate material derived from antigen-(SRBC) activated B (sIg+) cells. This soluble products bears Ig determinants and binds to the eliciting antigen (SRBC). The activity of this antibody in suppressing anti-SRBC plaque-forming cell responses is restricted to spleen cell cultures containing B cells sharing VH genes with the B cells producing the suppressive antibody. The anti-hapten (trinitrophenyl) response to derivatized SRBC is not affected by antigen-primed B cells or their products. These data are compatible with suppression being mediated by anti-antigen antibody, either (a) via blockade of different SRBC epitopes recognized by a limited set of B cell clones in each mouse strain, (b) via triggering of an anti-idiotypic response, either antibody or suppressor T cell in nature, restricted to activity in cultures containing B cells sharing VH structures with the original antibody, or (c) via interference by preformed antibody with T cell help directed at idiotype bearing B cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


2015 ◽  
Vol 15 (3) ◽  
pp. 185-189 ◽  
Author(s):  
Shane Crotty
Keyword(s):  
T Cell ◽  
B Cells ◽  

2000 ◽  
Vol 191 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Zhengbin Lu ◽  
Lingxian Yuan ◽  
Xianzheng Zhou ◽  
Eduardo Sotomayor ◽  
Hyam I. Levitsky ◽  
...  

In many cases, induction of CD8+ CTL responses requires CD4+ T cell help. Recently, it has been shown that a dominant pathway of CD4+ help is via antigen-presenting cell (APC) activation through engagement of CD40 by CD40 ligand on CD4+ T cells. To further study this three cell interaction, we established an in vitro system using dendritic cells (DCs) as APCs and influenza hemagglutinin (HA) class I and II peptide–specific T cell antigen receptor transgenic T cells as cytotoxic T lymphocyte precursors and CD4+ T helper cells, respectively. We found that CD4+ T cells can provide potent help for DCs to activate CD8+ T cells when antigen is provided in the form of either cell lysate, recombinant protein, or synthetic peptides. Surprisingly, this help is completely independent of CD40. Moreover, CD40-independent CD4+ help can be documented in vivo. Finally, we show that CD40-independent T cell help is delivered through both sensitization of DCs and direct CD4+–CD8+ T cell communication via lymphokines. Therefore, we conclude that CD4+ help comprises at least three components: CD40-dependent DC sensitization, CD40-independent DC sensitization, and direct lymphokine-dependent CD4+–CD8+ T cell communication.


2011 ◽  
Vol 178 (1) ◽  
pp. 222-232 ◽  
Author(s):  
Tsutomu Nagashima ◽  
Shingo Ichimiya ◽  
Tomoki Kikuchi ◽  
Yoshiyuki Saito ◽  
Hiroshi Matsumiya ◽  
...  
Keyword(s):  
T Cell ◽  
B Cells ◽  

Sign in / Sign up

Export Citation Format

Share Document