Human bone cells in culture: application to the study of the biocompatibility in vitro

Bone ◽  
1995 ◽  
Vol 17 (6) ◽  
pp. 596 ◽  
Author(s):  
A. Zarrinpourt ◽  
Y. Josset ◽  
N. . Lalun ◽  
G. Hirnber ◽  
J.J. Adnet ◽  
...  
Biofouling ◽  
2021 ◽  
pp. 1-10
Author(s):  
Jesse W. P Kuiper ◽  
Jolanda M. A Hogervorst ◽  
Bjorn L. Herpers ◽  
Astrid D. Bakker ◽  
Jenneke Klein-Nulend ◽  
...  
Keyword(s):  

1994 ◽  
Vol 130 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Moustapha Kassem ◽  
Leif Mosekilde ◽  
Erik F Eriksen

Kassem M, Mosekilde L, Eriksen EF. Effects of fluoride on human bone cells in vitro: differences in responsiveness between stromal osteoblast precursors and mature osteoblasts. Eur J Endocrinol 1994;130:381–6. ISSN 0804–4643 The cellular effects of sodium fluoride (NaF) on human bone cells in vitro have been variable and dependent on the culture system used. Variability could be attributed to differences in responsiveness to NaF among different populations of cells at various stages of differentiation in the osteoblastic lineage. In this study we compared the effects of NaF in serum-free medium on cultures of more differentiated human osteoblast-like (hOB) cells derived from trabecular bone explants and on osteoblast committed precursors derived from human bone marrow, i.e. human marrow stromal osteoblast-like (hMS(OB)) cells. Sodium fluoride (10−5 mol/l) increased proliferation of hMS(OB) cells (p<0.05, N = 10) but was not mitogenic to hOB cells (p>0.05, N= 10). Alkaline phosphatase (AP) production increased in both hMS(OB) (p<0.05, N=9) and hOB cells (p<0.05, N=9). No significant effects on procollagen type I propeptide production were obtained in either culture. In the presence of 1,25-dihydroxycholecalciferol (10−9 mol/l), NaF enhanced alkaline phosphatase (p<0.05, N=8), procollagen type I propeptide (p<0.05, N=7) and osteocalcin (p<0.05, N=7) production by hMS(OB) cells but not by hOB cells. Our results suggest that osteoblast precursors are more sensitive to NaF action than mature osteoblasts and that the in vivo effects of NaF on bone formation may be mediated by stimulating proliferation and differentiation of committed osteoblast precursors in bone marrow. M Kassem, Mayo Clinic, Endocrine Research Unit, W-Joseph 5-164, Rochester, MN 55904, USA


1992 ◽  
Vol 127 (6) ◽  
pp. 509-514 ◽  
Author(s):  
Rolf E Brenner ◽  
Bert Riemenschneider ◽  
Werner Blum ◽  
Martin Mörike ◽  
Walter M Teller ◽  
...  

We studied the influence of fasting serum from nine insulin-dependent diabetic children and adolescents under insufficient metabolic control on normal human bone cells in vitro compared with serum from eight sex- and age-matched controls. Cell number 24 h after plating was significantly less under diabetic serum, indicating impaired cell attachment, spreading and initiation of cell proliferation. Cell number after five days was reduced by 1% diabetic serum, while higher serum concentrations had diverging effects on osteoblast proliferation. Collagen synthesis of human osteoblasts was significantly reduced by 8% diabetic serum compared to 8% control serum, while synthesis of non-collagenous proteins was not affected. Duration of diabetes (several weeks up to 12 years) had no influence on these parameters. The serum from one patient, which was studied a second time under excellent metabolic control three months later, however, had lost its inhibitory influence on collagen synthesis of osteoblasts. The pattern of the interstitial collagen types I, III and V was not altered by diabetic serum. These results indicate that defective regulation of proliferation and collagen synthesis of osteoblasts by components present in human diabetic serum may be an important factor in the development of diabetic osteopenia. The negative influence might be explained in part by reduced levels of IGF-I and elevated levels of IGF binding protein-1 in the diabetic sera.


1985 ◽  
Vol 105 (3) ◽  
pp. 391-396 ◽  
Author(s):  
H. Skjødt ◽  
J. A. Gallagher ◽  
J. N. Beresford ◽  
M. Couch ◽  
J. W. Poser ◽  
...  

ABSTRACT The effects of six natural vitamin D metabolites of potential biological and therapeutic interest, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), 25-hydroxyvitamin D3 (25-OH-D3), 24R,25-dihydroxyvitamin D3 (24R,25-(OH)2D3), 1,24R,25-trihydroxyvitamin D3 (1,24R,25-(OH)3D3), 25S,26-dihydroxyvitamin D3 (25S,26-(OH)2D3) and 1,25S,26-trihydroxyvitamin D3 (1,25S,26-(OH)3D3) on cell replication and expression of the osteoblastic phenotype in terms of osteocalcin production were examined in cultured human bone cells. At a dose of 5 × 10−12 mol/l, 1,25-(OH)2D3 stimulated cell proliferation, whereas at higher doses (5 × 10−9−5 × 10 −6 mol/l) cell growth was inhibited in a dose-dependent manner. The same pattern of effects was seen for the other metabolites in a rank order of potency: 1,25-(OH)2D3> 1,25S,26-(OH)3D3 = 1,24R,25-(OH)3D3>25S,26-(OH)2D3 = 24R,25-(OH)2D3 = 25-OH-D3. Synthesis of osteocalcin was induced by 1,25-(OH)2D3 in doses similar to those required to inhibit cell proliferation. Biphasic responses were observed for some of the metabolites in terms of osteocalcin synthesis, inhibitory effects becoming apparent at 5 × 10−6 mol/l. The cells did not secrete osteocalcin spontaneously. These results indicate that vitamin D metabolites may regulate growth and expression of differentiated functions of normal human osteoblasts. J. Endocr. (1985) 105, 391–396


1998 ◽  
Vol 274 (6) ◽  
pp. E1113-E1120 ◽  
Author(s):  
Jozien G. H. Sterck ◽  
Jenneke Klein-Nulend ◽  
Paul Lips ◽  
Elisabeth H. Burger

Bone adapts to mechanical stress, and bone cell cultures from animal origin have been shown to be highly sensitive to mechanical stress in vitro. In this study, we tested whether bone cell cultures from human bone biopsies respond to stress in a similar manner as animal bone cells and whether bone cells from osteoporotic patients respond similarly to nonosteoporotic donors. Bone cell cultures were obtained as outgrowth from collagenase-stripped trabecular bone fragments from 17 nonosteoporotic donors between 7 and 77 yr of age and from 6 osteoporotic donors between 42 and 72 yr of age. After passage, the cells were mechanically stressed by treatment with pulsating fluid flow (PFF; 0.7 ± 0.03 Pa at 5 Hz for 1 h) to mimic the stress-driven flow of interstitial fluid through the bone canaliculi, which is likely the stimulus for mechanosensation in bone in vivo. Similar to earlier studies in rodent and chicken bone cells, the bone cells from nonosteoporotic donors responded to PFF with enhanced release of prostaglandin E2(PGE2) and nitric oxide as well as a reduced release of transforming growth factor-β (TGF-β). The upregulation of PGE2 but not the other responses continued for 24 h after 1 h of PFF treatment. The bone cells from osteoporotic donors responded in a similar manner as the nonosteoporotic donors except for the long-term PGE2 release. The PFF-mediated upregulation of PGE2 release during 24 h of postincubation after 1 h of PFF was significantly reduced in osteoporotic patients compared with six age-matched controls as well as with the whole nonosteoporotic group. These results indicate that enhanced release of PGE2 and nitric oxide, as well as reduced release of TGF-β, is a characteristic response of human bone cells to fluid shear stress, similar to animal bone cells. The results also suggest that bone cells from osteoporotic patients may be impaired in their long-term response to mechanical stress.


1985 ◽  
Vol 37 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Bettina Auf'mkolk ◽  
Peter V. Hauschka ◽  
Edith R. Schwartz

1992 ◽  
Vol 17 ◽  
pp. 135
Author(s):  
E. Lopez ◽  
B. Vidal ◽  
G. Camprasse ◽  
S. Camprasse ◽  
C. Silve

1994 ◽  
Vol 20 (4) ◽  
pp. 209
Author(s):  
L.D. Fillak ◽  
D.A. Dossing ◽  
M.T. DiMuzio ◽  
E.M. Osetek

Sign in / Sign up

Export Citation Format

Share Document