osteogenic effect
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 34)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Sümeyra Nur Fuerkaiti ◽  
Anıl Sera Çakmak ◽  
Cagatay Karaaslan ◽  
Menemşe Gümüşderelioğlu

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaxiao Li ◽  
Zexin Chen ◽  
Hongbo Liao ◽  
Yanting Zhong ◽  
Junying Hua ◽  
...  

Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by abnormal bone metabolism, with few effective treatments available. Danshensu [3-(3,4-dihydroxy-phenyl) lactic acid) is a bioactive compound from traditional Chinese medicine with a variety of pharmacologic effects. In the present study, we investigated the pharmacologic effect and molecular mechanism of Danshensu in AS. Potential targets of Danshensu were identified in four drugs-genes databases; and potential pharmacologic target genes in AS were identified in three diseases-genes databases. Differentially expressed genes related to AS were obtained from the Gene Expression Omnibus database. Overlapping targets of Danshensu and AS were determined and a disease–active ingredient–target interaction network was constructed with Cytoscape software. Enrichment analyses of the common targets were performed using Bioconductor. To test the validity of the constructed network, an in vitro model was established by treating osteoblasts from newborn rats with low concentrations of tumor necrosis factor (TNF)-α. Then, the in vitro model and AS fibroblasts were treated with Danshensu (1–10 μM). Osteogenesis was evaluated by alkaline phosphatase staining and activity assay, alizarin red staining, quantitative PCR, and western blotting. We identified 2944 AS-related genes and 406 Danshensu targets, including 47 that were common to both datasets. The main signaling pathways associated with the targets were the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways. A low concentration of TNF-α (0.01 ng/ml) promoted the differentiation of osteoblasts; this was inhibited by Danshensu, which had the same effect on AS fibroblasts but had the opposite effect on normal osteoblasts. Danshensu also decreased the phosphorylation of JNK and ERK in AS fibroblasts. There results provide evidence that Danshensu exerts an anti-osteogenic effect via suppression of JNK and ERK signaling, highlighting its therapeutic potential for the treatment of AS.


2021 ◽  
Author(s):  
Chen Wang ◽  
Yanchang Liu ◽  
Xianbo Shang ◽  
Sai Ma ◽  
Huihui Guo ◽  
...  

Abstract Background Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. Methods TiO2 nanotubes were prepared on the surface of titanium specimens using the anodizing method. The surface morphology of the nanotubes was observed by a scanning electron microscope, and the elemental analysis was carried out by X-ray energy dispersive spectroscopy. Quantitative reverse transcriptase polymerase chain reaction and western blotting were used to detect the expression of P2Y6, markers of osteogenic differentiation, and PKCα–ERK1/2. Results The average inner diameter of the TiO2 nanotubes increases with an increase in voltage (voltage range of 30–90V), and the expression of P2Y6 in BMSCs could be upregulated by TiO2 nanotubes in osteogenic culture. Inhibition of P2Y6 expression partially inhibited the osteogenic effect of TiO2 nanotubes and downregulated the activity of the PKCα–ERK1/2 pathway. The osteogenic effect of TiO2 nanotubes when combined with P2Y6 agonists was more pronounced. Conclusions TiO2 nanotubes can promote the P2Y6 expression of BMSCs during osteogenic differentiation and promote osteogenesis by activating the PKCα–ERK1/2 pathway.


Phytomedicine ◽  
2021 ◽  
pp. 153750
Author(s):  
Reena Rai ◽  
Sudhir Kumar ◽  
Krishna Bhan Singh ◽  
Sonu khanka ◽  
Yatendra Singh ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Vânia P. Roberto ◽  
Gwladys Surget ◽  
Klervi Le Lann ◽  
Sara Mira ◽  
Marco Tarasco ◽  
...  

Osteoporosis is an aging-related disease and a worldwide health issue. Current therapeutics have failed to reduce the prevalence of osteoporosis in the human population, thus the discovery of compounds with bone anabolic properties that could be the basis of next generation drugs is a priority. Marine plants contain a wide range of bioactive compounds and the presence of osteoactive phytochemicals was investigated in two halophytes collected in Brittany (France): the invasive Spartina alterniflora and the native Salicornia fragilis. Two semi-purified fractions, prepared through liquid-liquid extraction, were assessed for phenolic and flavonoid contents, and for the presence of antioxidant, mineralogenic and osteogenic bioactivities. Ethyl acetate fraction (EAF) was rich in phenolic compounds and exhibited the highest antioxidant activity. While S. fragilis EAF only triggered a weak proliferative effect in vitro, S. alterniflora EAF potently induced extracellular matrix mineralization (7-fold at 250 μg/mL). A strong osteogenic effect was also observed in vivo using zebrafish operculum assay (2.5-fold at 10 μg/mL in 9-dpf larvae). Results indicate that polyphenol rich EAF of S. alterniflora has both antioxidant and bone anabolic activities. As an invasive species, this marine plant may represent a sustainable source of molecules for therapeutic applications in bone disorders.


2021 ◽  
Vol 22 (9) ◽  
pp. 4486
Author(s):  
Hitesh Chopra ◽  
Yuanyuan Han ◽  
Cheng F. Zhang ◽  
Edmond H. N. Pow

Material research in tissue engineering forms a vital link between basic cell research and animal research. Periodontal ligament cells (PDLCs, P) from the tooth have an osteogenic effect, whereas endothelial progenitor cells (EPCs, E) assist in neovascularization. In the present study, the interaction of PDLCs and EPCs with Tantalum (Ta, I) discs, either alone (IP or IE group) or in 1:1 (IPE) ratio was explored. Additionally, surface analysis of Ta discs with respect to different types and cycles of sterilization and disinfection procedures was evaluated. It was observed that Ta discs could be used for a maximum of three times, after which the changes in properties of Ta discs were detrimental to cell growth, irrespective of the type of the protocol. Cell-Disc’s analysis revealed that cell proliferation in the IE group at day 6 and day 10 was significantly higher (p < 0.05) than other groups. A cell viability assay revealed increased live cells in the IPE group than in the IP or IE group. Similarly, adhesion and penetration of cells in the IPE group were not only higher, but also had an increased thickness of cellular extensions. RT-PCR analysis revealed that on day 8, both osteogenic (ALP, RUNX-2, and BSP) and angiogenic genes (VEGFR-2, CD31) increased significantly in the IPE group as compared to the IP or IE groups (p < 0.05). In conclusion, Ta discs promoted cellular proliferation and increased osteogenic and angiogenic activity by augmenting RUNX-2 and VEGFR-2 activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Naruphong Phunikom ◽  
Nittaya Boonmuen ◽  
Pakpoom Kheolamai ◽  
Kanoknetr Suksen ◽  
Sirikul Manochantr ◽  
...  

Abstract Introduction The in vitro expansion and differentiation of mesenchymal stem cells derived from bone marrow (BM-hMSCs) are considered as potential therapeutic tools for clinical applications in bone tissue engineering and regenerative medicine. However, invasive sampling and reduction in number and proliferative capacity with age are the major limitations of BM-hMSCs. Recently, human placenta-derived MSCs (PL-hMSCs) obtained by a non-invasive procedure have attracted much interest. Attempts to increase the potential of PL-hMSCs would be an important paradigm in regenerative medicine. Herein, we examined the proliferative and osteogenic effect of andrographolide (AP) on PL-hMSCs. Methods Mesenchymal stem cells were isolated from full-term normal human placentas and were characterized before using. Cell cytotoxicity and proliferative effect of AP were examined by MTT and BrdU assay, respectively. The non-toxicity concentrations of AP were further assessed for osteogenic effect determined by alkaline phosphatase (ALP) expression and activity, alizarin red staining, and osteoblast-specific gene expressions. Screening of genes involved in osteogenic differentiation-related pathways modulated by AP was explored by a NanoString nCounter analysis. Results PL-hMSCs generated in this study met the MSC criteria set by the International Society of Cellular Therapy. The non-cytotoxic concentrations of AP on PL-hMSCs are up to 10 μM. The compound increased PL-hMSC proliferation concomitant with increases in Wnt/β-catenin level and activity. It also enhanced osteogenic differentiation in association with osteoblast-specific mRNA expression. Further, AP promoted bone formation and increased bone structural protein level, osteocalcin, in osteoblastic cells. Gene screening analysis showed the upregulation of genes related to Wnt/β-catenin, TGFβ/BMP, SMAD, and FGF signaling pathways. Conclusion We demonstrated, for the first time, the potential role of AP in promoting proliferation, osteogenic differentiation, and osteoblast bone formation of PL-hMSCs. This study suggests that AP may be an effective novel agent for the improvement of PL-hMSCs and stem cell-based therapy for bone regeneration.


Author(s):  
Célio da Costa Fernandes ◽  
Victor Manuel Ochoa Rodríguez ◽  
Andrea Soares-Costa ◽  
Joni Augusto Cirelli ◽  
Daniela Morilha Neo Justino ◽  
...  

AbstractPhytocystatins are endogenous cysteine-protease inhibitors present in plants. They are involved in initial germination rates and in plant defense mechanisms against phytopathogens. Recently, a new phytocystatin derived from sweet orange, CsinCPI-2, has been shown to inhibit the enzymatic activity of human cathepsins, presenting anti-inflammatory potential and pro-osteogenic effect in human dental pulp cells. The osteogenic potential of the CsinCPI-2 protein represents a new insight into plants cysteine proteases inhibitors and this effect needs to be better addressed. The aim of this study was to investigate the performance of pre-osteoblasts in response to CsinCPI-2, mainly focusing on cell adhesion, proliferation and differentiation mechanisms. Together our data show that in the first hours of treatment, protein in CsinCPI-2 promotes an increase in the expression of adhesion markers, which decrease after 24 h, leading to the activation of Kinase-dependent cyclines (CDKs) modulating the transition from G1 to S phases cell cycle. In addition, we saw that the increase in ERK may be associated with activation of the differentiation profile, also observed with an increase in the B-Catenin pathway and an increase in the expression of Runx2 in the group that received the treatment with CsinCPI-2.


Sign in / Sign up

Export Citation Format

Share Document