PLASMA STABILITY IN THE BELT-PINCH AT HIGHER TEMPERATURES

1976 ◽  
pp. 513-515
Author(s):  
O. GRUBER ◽  
R. WILHELM
Keyword(s):  
2020 ◽  
Vol 3 (12) ◽  
pp. 8532-8541
Author(s):  
Xingyi Yuan ◽  
Chenhong Wang ◽  
Junyi Chen ◽  
Xiaoyan Shu ◽  
Yao Chai ◽  
...  

1982 ◽  
Vol 87 (A10) ◽  
pp. 8057 ◽  
Author(s):  
Stefano Migliuolo
Keyword(s):  

1998 ◽  
Vol 159 (1) ◽  
pp. 93-102 ◽  
Author(s):  
U Ritzel ◽  
U Leonhardt ◽  
M Ottleben ◽  
A Ruhmann ◽  
K Eckart ◽  
...  

Glucagon-like peptide-1 (GLP-1) is the most potent endogenous insulin-stimulating hormone. In the present study the plasma stability and biological activity of a GLP-1 analog, [Ser]GLP-1(7-36)amide, in which the second N-terminal amino acid alanine was replaced by serine, was evaluated in vitro and in vivo. Incubation of GLP-1 with human or rat plasma resulted in degradation of native GLP-1(7-36)amide to GLP-1(9-36)amide, while [Ser]GLP-1(7-36)amide was not significantly degraded by plasma enzymes. Using glucose-responsive HIT-T15 cells, [Ser]GLP-1(7-36)amide showed strong insulinotropic activity, which was inhibited by the specific GLP-1 receptor antagonist exendin-4(9-39)amide. Simultaneous i.v. injection of [Ser]GLP-1(7-36)amide and glucose in rats induced a twofold higher increase in plasma insulin levels than unmodified GLP-1(7-36)amide with glucose and a fivefold higher increase than glucose alone. [Ser]GLP-1(7-36)amide induced a 1.5-fold higher increase in plasma insulin than GLP-1(7-36)amide when given 1 h before i.v. application of glucose. The insulinotropic effect of [Ser]GLP-1(7-36)amide was suppressed by i.v. application of exendin-4(9-39)amide. The present data demonstrate that replacement of the second N-terminal amino acid alanine by serine improves the plasma stability of GLP-1(7-36)amide. The insulinotropic action in vitro and in vivo was not impaired significantly by this modification.


1965 ◽  
Vol 19 (5) ◽  
pp. 1369-1375 ◽  
Author(s):  
B. A. Trubnikov

2003 ◽  
Vol 65 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Jean-François Goossens ◽  
Jérôme Kluza ◽  
Hervé Vezin ◽  
Mustapha Kouach ◽  
Gilbert Briand ◽  
...  

2021 ◽  
Author(s):  
Mitchell D Clement ◽  
Nikolas Logan ◽  
Mark D Boyer

Abstract GPECnet is a densely connected neural network that has been trained on GPEC data, to predict the plasma stability, neoclassical toroidal viscosity (NTV) torque, and optimized 3D coil current distributions for desired NTV torque profiles. Using NTV torque, driven by non-axisymmetric field perturbations in a tokamak, can be vital in optimizing pedestal performance by controlling the rotation profile in both the core, to ensure tearing stability, and the edge, to avoid edge localized modes (ELMs). The Generalized Perturbed Equilibrium Code (GPEC) software package can be used to calculate the plasma stability to 3D perturbations and the NTV torque profile generated by applied 3D magnetic fields. These calculations, however, involve complex integrations over space and energy distributions, which takes time to compute. Initially, GPECnet has been trained solely on data representative of the quiescent H-mode (QH) scenario, in which neutral beams are often balanced and toroidal rotation is low across the plasma profile. This work provides the foundation for active control of the rotation shear using a combination of beams and 3D fields for robust and high performance QH mode operation.


1974 ◽  
Vol 52 (22) ◽  
pp. 2246-2249 ◽  
Author(s):  
H. W. H. Van Andel ◽  
M. T. Churchland ◽  
G. Calabrese

A plasma produced by a helical RF structure of the Lisitano type is investigated. Measurements of electron density, electron temperature, and plasma stability are reported as a function of RF frequency and power, magnetic field strength and geometry, and neutral argon pressure. It is concluded that at moderate power (~20 W), electron cyclotron resonance is important in the power absorption process.


Sign in / Sign up

Export Citation Format

Share Document