Neoclassical toroidal viscosity torque prediction via deep learning

2021 ◽  
Author(s):  
Mitchell D Clement ◽  
Nikolas Logan ◽  
Mark D Boyer

Abstract GPECnet is a densely connected neural network that has been trained on GPEC data, to predict the plasma stability, neoclassical toroidal viscosity (NTV) torque, and optimized 3D coil current distributions for desired NTV torque profiles. Using NTV torque, driven by non-axisymmetric field perturbations in a tokamak, can be vital in optimizing pedestal performance by controlling the rotation profile in both the core, to ensure tearing stability, and the edge, to avoid edge localized modes (ELMs). The Generalized Perturbed Equilibrium Code (GPEC) software package can be used to calculate the plasma stability to 3D perturbations and the NTV torque profile generated by applied 3D magnetic fields. These calculations, however, involve complex integrations over space and energy distributions, which takes time to compute. Initially, GPECnet has been trained solely on data representative of the quiescent H-mode (QH) scenario, in which neutral beams are often balanced and toroidal rotation is low across the plasma profile. This work provides the foundation for active control of the rotation shear using a combination of beams and 3D fields for robust and high performance QH mode operation.

2021 ◽  
Vol 47 (11) ◽  
pp. 1119-1127
Author(s):  
S. Yu. Medvedev ◽  
A. A. Martynov ◽  
S. V. Konovalov ◽  
V. M. Leonov ◽  
V. E. Lukash ◽  
...  

Abstract Studying stationary regimes with high plasma confinement in a tokamak with reactor technologies (TRT) [1] involves calculating the plasma stability taking into account the influence of the current density profiles and pressure gradient in the pedestal near the boundary. At the same time, the operating limits should be determined by the parameters of the pedestal, which, in particular, are set by the stability limit of the peeling–ballooning modes that trigger the peripheral disruption of edge localized modes (ELM). Using simulation of the quasi-equilibrium evolution of the plasma by the ASTRA and DINA codes, as well as a simulator of magnetohydrodynamic (MHD) modes localized at the boundary of the plasma torus based on the KINX code, stability calculations are performed for different plasma scenarios in the TRT with varying plasma density and temperature profiles, as well as the corresponding bootstrap current density in the pedestal region. At the same time, experimental scalings for the width of the pedestal are used. The obtained pressure values are below the limits for an ITER-like plasma due to the lower triangularity and higher aspect ratio of TRT plasma. For the same reason, the reversal of magnetic field shear in the pedestal occurs at a lower current density, which causes the instability of modes with low toroidal wave numbers and reduces the effect of diamagnetic stabilization.


Author(s):  
Xavier L LITAUDON ◽  
Frank Jenko ◽  
D. Borba ◽  
Dmitriy V. Borodin ◽  
Bastiaan Braams ◽  
...  

Abstract The paper is a written summary of an overview oral presentation given at the 1st Spanish Fusion HPC Workshop that took place on the 27th November 2020 as an online event. Given that over the next few years ITER will move to its operation phase and the European-DEMO design will be significantly advanced, the EUROfusion consortium has initiated a coordination effort in theory and advanced simulation to address some of the challenges of the fusion research in Horizon EUROPE (2021-2027), i.e. the next EU Framework Programme for Research and Technological Development. This initiative has been called E-TASC that stands for EUROfusion-Theory and Advanced Simulation Coordination. The general and guiding principles of E-TASC are summarized in the paper. In addition, an overview of the scientific results obtained in a pilot phase (2019-2020) of E-TASC are provided while highlighting the importance of the required progress in computational methods and HPC techniques. In the initial phase, five pilot theory and simulation tasks were initiated: 1. Towards a validated predictive capability of the L-H transition and pedestal physics; 2. Electron runaway in tokamak disruptions in the presence of massive material injection; 3. Fast code for the calculation of neoclassical toroidal viscosity in stellarators and tokamaks; 4. Development of a neutral gas kinetics modular code; 5. European edge and boundary code for reactor-relevant devices. In this paper we report on recent progress made by each of these projects.


2004 ◽  
Author(s):  
R. Maingi ◽  
K. Tritz ◽  
E.D. Fredrickson ◽  
J.E. Menard ◽  
S.A. Sabbagh ◽  
...  

2003 ◽  
Vol 45 (10) ◽  
pp. 1845-1872 ◽  
Author(s):  
A D Turnbull ◽  
L L Lao ◽  
T H Osborne ◽  
O Sauter ◽  
E J Strait ◽  
...  

2005 ◽  
Vol 45 (4) ◽  
pp. 264-270 ◽  
Author(s):  
R Maingi ◽  
K Tritz ◽  
E.D Fredrickson ◽  
J.E Menard ◽  
S.A Sabbagh ◽  
...  

Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Sign in / Sign up

Export Citation Format

Share Document