MODIFICATION OF CHOLINESTERASE ACTIVITY IN SOME CEREBRAL STRUCTURES BY PROSTAGLANDIN F2 alpha INJECTED INTO THE CEREBRAL VENTRICLES OF THE CATS

Abstracts ◽  
1978 ◽  
pp. 690
Author(s):  
B.Ž. Radmanovic ◽  
Leposava Grbovic
1957 ◽  
Vol 189 (3) ◽  
pp. 513-516 ◽  
Author(s):  
Richard P. White ◽  
Harold E. Himwich

The effects of unilateral ablation of specific prosencephalic structures in rabbits induced to circle by the administration of DFP into the right common carotid artery were studied. In most cases, ablation of the cortex did not stop the circus movements, whereas excision of the right caudate nucleus in animals circling contralaterally usually stopped this behavior. Ipsiversive turning, however, was not usually affected even with bilateral removal of the telencephalon, a finding which indicates that mesodiencephalic structures may be involved in ipsiversive responses produced by intracarotid injections of DFP. This result, together with cholinesterase activity measurements, support the conclusion that in the rodent the nucleus caudatus is principally involved in contraversive responses and mesodiencephalic structures may be important to ipsiversive turning following an injection of DFP into the right carotid artery.


Author(s):  
J. A. Nowell ◽  
J. Pangborn ◽  
W. S. Tyler

Leonardo da Vinci in the 16th century, used injection replica techniques to study internal surfaces of the cerebral ventricles. Developments in replicating media have made it possible for modern morphologists to examine injection replicas of lung and kidney with the scanning electron microscope (SEM). Deeply concave surfaces and interrelationships to tubular structures are difficult to examine with the SEM. Injection replicas convert concavities to convexities and tubes to rods, overcoming these difficulties.Batson's plastic was injected into the renal artery of a horse kidney. Latex was injected into the pulmonary artery and cementex in the trachea of a cat. Following polymerization the tissues were removed by digestion in concentrated HCl. Slices of dog kidney were aldehyde fixed by immersion. Rat lung was aldehyde fixed by perfusion via the trachea at 30 cm H2O. Pieces of tissue 10 x 10 x 2 mm were critical point dried using CO2. Selected areas of replicas and tissues were coated with silver and gold and examined with the SEM.


Author(s):  
Dong Chun Shin ◽  
Soon Young Lee ◽  
Sang Hyuk Chung ◽  
Jong Uk Won ◽  
Jong Sei Park ◽  
...  

2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Ricardo Christ ◽  
Aleksandro Schafer Da Silva ◽  
Mateus Eloir Grabriel ◽  
Luan Cleber Henker ◽  
Renan Augusto Cechin ◽  
...  

  Background: Nitrate and nitrite poisoning is associated with pasture intake that has high nitrate levels and leads to acute methemoglobinemia. Pasture may accumulate nitrate under certain conditions, such as excessively fertilized soil or en­vironmental conditions that enhance the N absorption (rain preceded by a period of drought). After ingestion of plants, this substrate reaches the rumen and, in physiological conditions, is reduced to nitrite and afterward to ammonia. The aim of this study was to evaluate changes in cholinesterase activities and oxidative stress caused by subclinical poisoning for nitrate and nitrite in cattle fed with Pennisetum glaucum in three different fertilization schemes. Materials, Methods & Results: In order to perform the experimental poisoning, the pasture was cultivated in three dif­ferent paddocks: with nitrogen topdressing (urea; group 1), organic fertilizer (group 2) or without fertilizer (group 3; control). Nitrate accumulation in forage was evaluated by the diphenylamine test. After food fasting of 12 h, nine bovine were randomly allocated to one of the experimental groups and fed with fresh forage (ad libitum) from respective pad­dock. In different time points from beginning of pasture intake (0, 2, 4, 6 and 9 h) heart rate and respiratory frequency were assessed, as well as mucous membrane color and behavioral changes. Blood samples from jugular vein into vials with and without anticoagulant were collected. From blood samples, serum nitrite levels, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme activity were evaluated, as well as oxidative stress through the following param­eters: levels of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS), beyond the antioxidant system by enzyme activity measurement of catalase (CAT) and superoxide dismutase (SOD). The diphenylamine test was positive to group 1 and 2, so that the pasture presented 3.16 mg/kg, 2.98 mg/kg and 1.67 mg/kg of nitrate for group 1, 2 and 3, respectively. In addition, cows from group 1 demonstrated increased (P < 0.05) nitrite levels in serum, compared to other groups, and greater heart rate after 9 h (P < 0.05). The AChE and BChE activity in group 1 showed significant increase (P < 0.05) at 4 and 6 h (AChE), and 4 and 9 h (BChE) compared to group 3. Also, NOx levels were lower at 6 and 9 h (P < 0.05) and at 9 h (P < 0.05) for animals of group 1 and 2, respectively, when compared to group 3. Furthermore, in the group 1 levels of ROS and TBARS were significantly higher (P < 0.05) after 2 and 4 h, and 6 and 9 h compared to other groups, respectively. The CAT activity increased significantly (P < 0.05) with 2 and 4 h of the experiment, but on the other hand, decreased at 6 and 9 h in group 1. Nevertheless, the animals from group 2 presented only a significant reduction in this enzyme activity at 9 h. Furthermore, SOD activity was reduced in animals of groups 1 (P < 0.05) at 4, 6 and 9 h, compared to other groups. Discussion: It was concluded that the nitrate and nitrite poisoning by pasture intake cultivated and fertilized with urea leads to increased levels of serum nitrite, as well as the cholinesterase activity and causes oxidative stress in cattle. It is conjectured that the cholinesterase activity and oxidative stress may assist in understanding the pathophysiology of changes caused by poisoning.Keywords: plant toxicology, poisoning, methemoglobin, cholinergic system, oxidative stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yitzhak Brzezinski-Sinai ◽  
Ester Zwang ◽  
Elena Plotnikova ◽  
Ester Halizov ◽  
Itzhak Shapira ◽  
...  

AbstractMaintaining hemodynamic stability during the induction and maintenance of anesthesia is one of the challenges of the anesthesiologist. Patients with vascular disease are at increased risk of instability due to imbalance between the sympathetic and parasympathetic parts of the autonomic nervous system, a balance accessible by serum cholinesterase activity. We aim to characterize the dynamics of cholinesterase activity in patients undergoing general anesthesia (GA) and surgery. This was a prospective study of 57 patients undergoing ambulatory or vascular surgery under GA. Cholinesterase activity was measured before the induction of anesthesia, after 15 min and at the end of surgery by calculating the capacity of serum acetylcholinesterase (AChE) and butyrylcholinesterase to hydrolyze AcetylThioCholine. Data on atherosclerotic disease, anesthesia management were analyzed. Both AChE and total cholinergic status (CS) decreased significantly after GA induction at 15 min and even more so by the end of surgery. Vascular surgery patients had lower baseline cholinesterase activity compared to ambulatory surgery patients. Patients requiring intraoperative administration of phenylephrine for hemodynamic support (21.1%) had a significantly lower level of AChE and CS compared to untreated patients. Our findings serve as a mirror to the sympathetic/parasympathetic imbalance during GA, with a marked decrease in the parasympathetic tone. The data of a subgroup analysis show a correlation between low cholinesterase activity and an increase in the need for hemodynamic support.


Sign in / Sign up

Export Citation Format

Share Document