Threshold Hydrogen Content for Hydrogen Embrittlement of Low Alloy Steels and 13Cr Steels

Author(s):  
Takahiro Kushida ◽  
Takeo Kudo
2015 ◽  
pp. 439-485

This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.


1987 ◽  
Vol 21 (10) ◽  
pp. 1369-1373 ◽  
Author(s):  
B.E. Wilde ◽  
I. Chattoraj ◽  
T.A. Mozhi

CORROSION ◽  
10.5006/3949 ◽  
2021 ◽  
Author(s):  
Esteban Rodoni ◽  
Andreas Viereckl ◽  
Zakaria Quadir ◽  
Aaron Dodd ◽  
Kim Verbeken ◽  
...  

Low alloy steels combine relatively low cost with exceptional mechanical properties, making them commonplace in oil and gas equipment. However, their strength and hardness are restricted for sour environments to prevent different forms of hydrogen embrittlement. Materials used in sour services are regulated by the ISO 15156-2 standard, which imposes a maximum hardness of 250 HV (22 HRC) and allows up to 1.0 wt% Ni additions due to hydrogen embrittlement concerns. Low alloy steels that exceed the ISO 15156-2 limit have to be qualified for service, lowering their commercial appeal. As a result, high-performing, usually high-nickel, low alloy steels used successfully in other industries are rarely considered for sour service. In this work, the hydrogen stress cracking resistance of the high-nickel (3.41 wt%), quenched and tempered, nuclear-grade ASTM A508 Gr.4N low alloy steel was investigated using slow strain rate testing as a function of applied cathodic potential. Results showed that the yield strength and ultimate tensile strength were unaffected by hydrogen, even at a high negative potential of -2.00 V<sub>Ag/AgCl</sub>. Hydrogen embrittlement effects were observed once the material started necking, manifested by a loss in ductility with increasing applied cathodic potentials. Indeed, A508 Gr.4N was less affected by hydrogen at high cathodic potentials than a low-strength (yield strength = 340 MPa) ferritic-pearlitic low alloy steel of similar nickel content. Additionally, hydrogen diffusivity was measured using the hydrogen permeation test. The calculated hydrogen diffusion coefficient of the ASTM A508 Gr.4N was two orders of magnitude smaller when compared to that of ferritic-pearlitic steels. Hydrogen embrittlement and diffusion results were linked to the microstructure features. The microstructure consisted in a bainitic/martensitic matrix with the presence of Cr<sub>23</sub>C<sub>6</sub> carbides as well as Mo and V-rich precipitates, which might have played a role in retarding hydrogen diffusion, kept responsible for the improved HE resistance.


2015 ◽  
Vol 57 (1-2) ◽  
pp. 63-68 ◽  
Author(s):  
N. N. Sergeev ◽  
A. N. Chukanov ◽  
V. P. Baranov ◽  
A. A. Yakovenko

Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Sign in / Sign up

Export Citation Format

Share Document