scholarly journals Hydrogen Embrittlement of Carbon Steel and Low Alloy Steels

1981 ◽  
Vol 30 (9) ◽  
pp. 534-534
Author(s):  
Koji YAMAKAWA
2015 ◽  
pp. 439-485

This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.


CORROSION ◽  
1960 ◽  
Vol 16 (3) ◽  
pp. 105t-114t ◽  
Author(s):  
B. W. FORGESON ◽  
C. R. SOUTHWELL ◽  
A. L ALEXANDER

Abstract Corrosion of ten structural steels exposed to tropical sea and fresh waters has been evaluated following an eight-year exposure period. The severity of corrosion is compared between the natural tropical environments of sea water mean tide, and sea water and fresh water continuous immersion, and correlated with similar corrosion tests that have been made on the east and west coasts of the United States. Corrosion resistance for mild carbon steel is compared when exposed with millscale, pickled, and machined surfaces. Underwater corrosion rates are compared for unalloyed carbon steel, copper-bearing steel, steels containing small percentages of nickel and chromium, and proprietary low-alloy steels. A comprehensive evaluation of the measured and observed effects of corrosion is given for the ten steels following exposure in each of the tropical environments. 2.2.7


Author(s):  
Andrew J. Duncan ◽  
Thad M. Adams ◽  
Poh-Sang Lam

An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source to meet the energy demands of the future. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Fracture toughness testing has been performed for one type of steel pipe material (A106 Grade B) in base metal, welded and heat affected zone conditions. C-shaped specimens were tested at room temperature in air and high pressure (102 ATM) hydrogen. A marked reduction in JQ was documented for both the base metal and HAZ metal tested in hydrogen. The results compliment a previous study on tensile properties of A106 Grade B material in high pressure hydrogen and are envisioned to be part of the basis for construction codes and structural integrity demonstrations of piping and pipelines for hydrogen service.


1987 ◽  
Vol 21 (10) ◽  
pp. 1369-1373 ◽  
Author(s):  
B.E. Wilde ◽  
I. Chattoraj ◽  
T.A. Mozhi

1984 ◽  
Vol 106 (3) ◽  
pp. 253-256 ◽  
Author(s):  
J. Lyman

When high carbon, low alloy steels, such as AISI 52100, are conventionally quenched or marquenched from an austenitizing temperature that dissolves all of the carbon in the austenite, many of the martensite crystals in the quenched microstructure are fractured or microcracked. This paper describes a process in which a limited amount of martensite is formed by quenching the steel to a temperature between the Ms temperature and conventional quench temperatures. This martensite is then tempered for a short time to toughen it before again cooling the steel to complete the formation of martensite from austenite. When the limited amount of martensite formed, and intermediately tempered, and the martensite formed on cooling from the intermediate tempering temperature are appropriately balanced by the processing, micro-cracking is essentially avoided. The process can be done in equipment and with procedures commonly used commercially.


2006 ◽  
pp. 13-41

Abstract Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.


Author(s):  
Andrew Duncan ◽  
Poh-Sang Lam ◽  
Thad Adams

An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.


Author(s):  
Yoshio Uemoto ◽  
Takahiro Kawabe ◽  
Hiroyuki Shibata ◽  
Shoh Tarasawa ◽  
Hiroshi Asano ◽  
...  

For condensate and feed water piping in nuclear power plants, it is desired to mitigate the pipe wall thinning risk due to Flow-Accelerated Corrosion (FAC). In aspect of material selection, low alloy steels are generally applied to improve FAC resistance. However, low alloy steels are inferior to carbon steels from the point of material cost and construction efficiency due to requirement of post weld heat treatment (PWHT). On the other hand, chromium is known as the most effective element to improve FAC resistance, and it is reported that a certain improvement of FAC resistance is also expected for carbon steels by increasing chromium content to over 0.10 wt%. Such chromium controlled carbon steels are manufactured within the chemical composition range specified by material code of carbon steels, such as ASME B&PV Code Sec.II. Therefore, the amount of alloy content is lower than those for low alloy steels. The authors expect that PWHT can also be exempted for a certain thickness range of chromium controlled carbon steels, according to the exemption condition for normal carbon steels by ASME B&PV Code Sec.III. Furthermore, the chromium controlled carbon steels are generally cheaper than low alloy steels for base materials such as pipe and plate. However, since chromium content of normal welding materials for carbon steels is generally lower than 0.05 wt%, chromium controlled carbon steel welding materials are specially-produced material. It makes the procurability worse compared to normal carbon steel welding materials. Additionally it should be confirmed if the increased chromium content affects the soundness of welded joint. From the above reasons, it is necessary to decide the appropriate welding materials and methods for the chromium controlled carbon steel piping, considering the procurability of welding materials and the soundness of welded joint. In this study, the authors prepared the test pieces which simulate the assumed circumferential butt welded joints, then conducted the mechanical test such as tensile, impact, bend and hardness test to evaluate the soundness of welded joints. Furthermore, the authors evaluated the chromium content distribution of welded joints by using the Electro Probe Micro Analyzer (EPMA), in order to confirm if the chromium content is maintained over 0.10 wt% within the whole expected area.


Sign in / Sign up

Export Citation Format

Share Document