Piezoelectric materials for cryogenic and high-temperature applications

Author(s):  
S.J. Zhang ◽  
F. Li ◽  
F.P. Yu
2005 ◽  
Vol 59 (27) ◽  
pp. 3471-3475 ◽  
Author(s):  
Shujun Zhang ◽  
Ru Xia ◽  
Laurent Lebrun ◽  
Dean Anderson ◽  
Thomas R. Shrout

2004 ◽  
Vol 313 (1) ◽  
pp. 63-69
Author(s):  
S. P. BEEBY ◽  
R. N. TORAH ◽  
N. GRABHAM ◽  
M. J. TUDOR ◽  
N. M. WHITE

Author(s):  
Natthaphon Raengthon ◽  
Jason Nikkel ◽  
Troy Ansell ◽  
David P. Cann

Perovskite materials have been widely embedded in many consumer and industrial electronics, both for capacitor applications in the case of dielectric materials, and for actuator, transducer and sensor applications in the case of piezoelectric materials. Functional devices used in high temperature environments, such as deep oil well instrumentation, geothermal exploration, and devices for aerospace applications require the persistence of materials’ properties at high temperatures. In this paper, high potential capacitor and piezoelectric ceramics for high temperature applications are presented. High dielectric constant (K) materials based on 0.8BaTiO3 – 0.2Bi(Zn1/2Ti1/2)O3 solid solutions have been shown to have superior properties for high temperature capacitor applications. Studies of the temperature dependence of the dielectric properties have shown that the composition with Ba vacancies exhibits a high relative permittivity (εr > 1150) and a low dielectric loss (tan δ < 0.05) that persist up to a temperature of 460 °C. This composition also shows a high resistivity in excess of 7.0 × 1010 Ω-cm which remains unchanged up to a temperature of 270 °C as well as a large RC time constant (RC > 20 s). In the case of high temperature piezoelectric ceramics, solid solutions of PbTiO3 – BiScO3 – Bi(M1/2Ti1/2)O3 ternary systems were studied, where M is Mg and Zn. The ratio of BiScO3 to Bi(M1/2Ti1/2)O3 was kept at 1:1, while the concentration of PbTiO3 was varied. X-ray diffraction patterns showed that tetragonal symmetry was observed in compositions which contain a high concentration of PbTiO3 (> 60 mol%). Evidence of a morphotropic phase boundary (MPB) was observed with compositions containing PbTiO3 in the range of 52–56 mol%. At 70 mol% PbTiO3 compositions, high Curie temperatures (TC) of 490 °C and 533 °C were observed for compositions containing Mg and Zn, respectively.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Alloy Digest ◽  
1952 ◽  
Vol 1 (2) ◽  

Abstract Flylite ZRE-1 is a creep resistant magnesium-base alloy primarily designed for jet engine components and other high temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Mg-2. Producer or source: Howard Foundry Company.


Alloy Digest ◽  
1978 ◽  
Vol 27 (6) ◽  

Abstract THERMALLOY 63W is a cast nickel-chromium-tungsten-iron alloy produced for service at temperature up to 1900 F. Centrifugally cast reformer tubes comprise one of its high-temperature applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-352. Producer or source: Abex Corporation, Engineered Products Division.


2010 ◽  
Vol 25 (11) ◽  
pp. 1169-1174 ◽  
Author(s):  
Xiang-Ping JIANG ◽  
Qing YANG ◽  
Chao CHEN ◽  
Na TU ◽  
Zu-Deng YU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document