Cases of ultra-low emission coal-fired power plants

Author(s):  
Tao Wang ◽  
Yongsheng Zhang
Keyword(s):  
2018 ◽  
Vol 53 ◽  
pp. 04005 ◽  
Author(s):  
Ding Yang ◽  
Yi Luo ◽  
XingLian Ye ◽  
WeiXiang Chen ◽  
Jun Guo ◽  
...  

SO3 is one of the main precursors of atmospheric PM2.5, and its emission has attracted more and more attention in the industry. This paper briefly analyzes the harm of SO3 and the method of controlled condensation to test SO3. The effect of cooperative removal of SO3 by ultra-low emission technology in some coal-fired power plants has been tested by using the method of controlled condensation. The results show that the cooperative removal of SO3 by ultra-low emission technology in coal-fired power plants is effective. The removal rate of SO3 by low-low temperature electrostatic precipitators and electrostatic-fabric integrated precipitators can be exceeded 80%, while the removal rate of SO3 by wet flue gas desulfurization equipment displays lower than the above two facilities, and the wet electrostatic precipitator shows a better removal effect on SO3. With the use of ultra-low emission technology in coal-fired power plants, the SO3 emission concentration of the tail chimney reaches less than 1 mg / Nm3.


Geothermics ◽  
2019 ◽  
Vol 80 ◽  
pp. 155-169 ◽  
Author(s):  
Giovanni Manente ◽  
Alessio Bardi ◽  
Andrea Lazzaretto ◽  
Marco Paci

2012 ◽  
Vol 236-237 ◽  
pp. 714-719
Author(s):  
Wei Lan ◽  
Bin Wang ◽  
Yi Ming Feng

Nowadays, the high-speed economic development has caused significant consumption of energy. While the circumstance is getting severer, solar energy is taken as a kind of clean, environmental friendly resource with infinite storage that has aroused a wide public concern. Photovoltaic and solar thermal are two main categories of solar applications. Because of its high conversion efficiency, low emission and flexible installation, dish Stirling solar power technology is more preferable to be used among the solar thermal area. From the view of practical engineering application, this paper illustrates multiple focusing methods of the current dish Stirling solar power systems in detail, and the comparison of these methods are given to analyze their advantages, disadvantages and their application scenarios. It can be used for the future development of dish Stirling solar power technology and applied as a reference for large dish solar thermal power plants’ installations and tests.


Author(s):  
H. H. Finckh ◽  
H. Pfost

Unfired combined cycles achieve superior efficiencies at low emission levels. The potential and efficiency limits are investigated and the possibilities for enhancing efficiency are described. It is demonstrated that limited supplementary firing of the heat recovery steam generator can be an interesting alternative and that this allows efficiency and plant size to be increased. The effects of supplementary firing on NOx emissions are also shown.


2000 ◽  
Vol 123 (1) ◽  
pp. 4-9 ◽  
Author(s):  
Lawrence A. Ruth

The U.S. Department of Energy is partnering with industry to develop advanced coal-fired electric power plants that are substantially cleaner, more efficient, and less costly than current plants. Low-emission boiler systems (LEBS) and high-performance power systems (HIPPS) are based, respectively, on the direct firing of pulverized coal and the indirectly fired combined cycle. LEBS uses a low-NOx slagging combustion system that has been shown in pilot-scale tests to emit less than 86 g/GJ (0.2 lb/106 Btu) of NOx. Additional NOx removal is provided by a moving bed copper oxide flue gas cleanup system, which also removes 97–99 percent of sulfur oxides. Stack levels of NOx can be reduced to below 9 g/GJ (0.02 lb/106 Btu). Construction of an 80 MWe LEBS proof-of-concept plant is scheduled to begin in the spring of 1999. Engineering development of two different HIPPS configurations is continuing. Recent tests of a radiant air heater, a key component of HIPPS, have indicated the soundness of the design for air temperatures to 1150°C. LEBS and HIPPS applications include both new power plants and repowering/upgrading existing plants.


2021 ◽  
Vol 2(50) ◽  
Author(s):  
Nikolay Bachev ◽  
◽  
Alena Shilova ◽  
Oleg Matyunin ◽  
Oksana Betinskaya ◽  
...  

An integral part of any open-type gas turbine plant is a low-emission combustion chamber, which is usually two-zone and cooled. One of the ways to reduce emission of harmful substanc-es is organizing low-emission low-temperature lean combustion with external heating of compo-nents. This paper investigates the effect of external heating of air and fuel gas on expansion of the lower combustion limit and stable flame position in a single-zone uncooled combustion chamber of a microgas turbine power plant. Stable position of the flame front in combustion chambers of this type mainly depends on the ratio between the average flow rate of the combus-tible-air mixture and the rate of turbulent combustion. This ratio depends on thermal, gas-dynamic, thermochemical and geometric factors. The purpose of this work is to substantiate the possibility of using the relative flow rate as a generalized characteristic. This goal was achieved in processing a large amount of published experimental data and numerical modeling of low-temperature combustion of lean mixtures. The most significant research result is determination of the range of relative flow rate (gk = 0.3…3.5·10-4 kg⁄s∙N), at which it is possible to ensure sta-ble flame position in a single-zone combustion chamber. Significance of the obtained results lies in the fact that using the relative flow rate makes it possible to quickly determine and analyze the geometric and gas-dynamic parameters and characteristics of turbulent combustion in com-bustion chambers of micro-gas turbine power plants.


2021 ◽  
Author(s):  
Zachariah Baird ◽  
Dmitri Neshumayev ◽  
Oliver Järvik ◽  
Kody M. Powell

To meet targets for reducing greenhouse gas emissions, many countries, including Estonia, must transition to low-emission electricity sources. Based on current circumstances, the most likely options in Estonia are renewables with energy storage, oil shale power plants with carbon capture and storage (CCS), or the combination of renewables and either oil shale or nuclear power plants. Here we compare these different scenarios to help determine which would be the most promising based on current information. For the comparison we performed simulations to assess how various systems meet the electricity demand in Estonia and at what cost.Based on our simulation results and literature data, combining wind turbines with thermal power plants would provide grid stability at a more affordable cost. Using nuclear power to compliment wind turbines would lead to an overall levelized cost of electricity (LCOE) in the range of 68 to 150 EUR/MWh (median of 103 EUR/MWh). Using oil shale power plants with CCS would give a cost between 91 and 163 EUR/MWh (median of 118 EUR/MWh). By comparison, using only renewables and energy storage would have an LCOE of 106 to 241 EUR/MWh (median of 153 EUR/MWh).


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3477-3488
Author(s):  
He-Xin Liu ◽  
Jia-Fan Xiao ◽  
Hou-Zhang Tan ◽  
Yi-Bin Wang ◽  
Fu-Xin Yang

The control of fouling deposition on the main equipment has always been an im-portant issue concerned by scientific research and industrial application. How-ever, severe fouling deposits on the induced fan blade and the low temperature economiser were found in a 1000 MW coal-fired power plant with ultra-low emission. The deposit samples were collected and analysed through X-ray dif-fraction spectrometer, X-ray fluorescence, elemental analyser and SEM with en-ergy dispersive spectrometers. The result shows that the deposits are mainly composed of tschermigite (NH4)Al(SO4)2 ? 12H2O, letovicite (NH4)3H(SO4)2, cal-cium sulphate CaSO4, and quartz SiO2. The ammonium sulphate is the main component of the fouling deposits. It acts as an adhesive and makes an important contribution to the deposition. The analysis shows that the ammonia slip from denitrification system and the unreasonable temperature setting are the main reasons for fouling deposition. It is suggested that the high concentration of am-monium slip at denitrification system and the rapid condensation of the sulphuric acid mist at heat exchanger should be paid more attention in coal-fired power plants.


Sign in / Sign up

Export Citation Format

Share Document