What is the Notion of a Complex Manifold with a Smooth Boundary?

1988 ◽  
pp. 185-201 ◽  
Author(s):  
C. Denson Hill
2007 ◽  
Vol 04 (03) ◽  
pp. 339-348 ◽  
Author(s):  
OSAMA ABDELKADER ◽  
SAYED SABER

We obtain a solution to the [Formula: see text]-equation with exact support in a domain Ω with C1-smooth boundary satisfying property B in a complex manifold. This is done for complex-valued forms of type (r,s), s ≥ 1 and for forms of type (r,s), q ≤ s ≤ n - q, with values in a holomorphic vector bundle when the domain Ω is strongly q-convex.


2006 ◽  
Vol 11 (2) ◽  
pp. 115-121 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,− div(|∇u1|p1−2∇u1) = λu1α11u2α12... unα1n,   x ∈ Ω,− div(|∇u2|p2−2∇u2) = λu1α21u2α22... unα2n,   x ∈ Ω, ... , − div(|∇un|pn−2∇un) = λu1αn1u2αn2... unαnn,   x ∈ Ω,ui = 0,   x ∈ ∂Ω,   i = 1, 2, ..., n,  where λ is a positive parameter, Ω is a bounded domain in RN (N > 1) with smooth boundary ∂Ω. In addition, we assume that 1 < pi < N for i = 1, 2, ..., n. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.


1985 ◽  
Vol 99 ◽  
pp. 11-30 ◽  
Author(s):  
Shigeyuki Kondo

A degeneration of K3 surfaces (over the complex number field) is a proper holomorphic map π: X→Δ from a three dimensional complex manifold to a disc, such that, for t ≠ 0, the fibres Xt = π-1(t) are smooth K3 surfaces (i.e. surfaces Xt with trivial canonical class KXt = 0 and dim H1(Xt, Oxt) = 0).


Author(s):  
Kazuo Akutagawa

AbstractWe show a kind of Obata-type theorem on a compact Einstein n-manifold $$(W, \bar{g})$$ ( W , g ¯ ) with smooth boundary $$\partial W$$ ∂ W . Assume that the boundary $$\partial W$$ ∂ W is minimal in $$(W, \bar{g})$$ ( W , g ¯ ) . If $$(\partial W, \bar{g}|_{\partial W})$$ ( ∂ W , g ¯ | ∂ W ) is not conformally diffeomorphic to $$(S^{n-1}, g_S)$$ ( S n - 1 , g S ) , then for any Einstein metric $$\check{g} \in [\bar{g}]$$ g ˇ ∈ [ g ¯ ] with the minimal boundary condition, we have that, up to rescaling, $$\check{g} = \bar{g}$$ g ˇ = g ¯ . Here, $$g_S$$ g S and $$[\bar{g}]$$ [ g ¯ ] denote respectively the standard round metric on the $$(n-1)$$ ( n - 1 ) -sphere $$S^{n-1}$$ S n - 1 and the conformal class of $$\bar{g}$$ g ¯ . Moreover, if we assume that $$\partial W \subset (W, \bar{g})$$ ∂ W ⊂ ( W , g ¯ ) is totally geodesic, we also show a Gursky-Han type inequality for the relative Yamabe constant of $$(W, \partial W, [\bar{g}])$$ ( W , ∂ W , [ g ¯ ] ) .


1997 ◽  
Vol 20 (2) ◽  
pp. 397-402 ◽  
Author(s):  
E. M. E. Zayed

The spectral functionΘ(t)=∑i=1∞exp(−tλj), where{λj}j=1∞are the eigenvalues of the negative Laplace-Beltrami operator−Δ, is studied for a compact Riemannian manifoldΩof dimension “k” with a smooth boundary∂Ω, where a finite number of piecewise impedance boundary conditions(∂∂ni+γi)u=0on the parts∂Ωi(i=1,…,m)of the boundary∂Ωcan be considered, such that∂Ω=∪i=1m∂Ωi, andγi(i=1,…,m)are assumed to be smooth functions which are not strictly positive.


2020 ◽  
Vol 20 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Zhijun Zhang

AbstractThis paper is concerned with the existence, uniqueness and asymptotic behavior of classical solutions to two classes of models {-\triangle u\pm\lambda\frac{|\nabla u|^{2}}{u^{\beta}}=b(x)u^{-\alpha}}, {u>0}, {x\in\Omega}, {u|_{\partial\Omega}=0}, where Ω is a bounded domain with smooth boundary in {\mathbb{R}^{N}}, {\lambda>0}, {\beta>0}, {\alpha>-1}, and {b\in C^{\nu}_{\mathrm{loc}}(\Omega)} for some {\nu\in(0,1)}, and b is positive in Ω but may be vanishing or singular on {\partial\Omega}. Our approach is largely based on nonlinear transformations and the construction of suitable sub- and super-solutions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Belhadj Karim ◽  
Abdellah Zerouali ◽  
Omar Chakrone

AbstractUsing the Ljusternik–Schnirelmann principle and a new variational technique, we prove that the following Steklov eigenvalue problem has infinitely many positive eigenvalue sequences:\left\{\begin{aligned} &\displaystyle\operatorname{div}(a(x,\nabla u))=0&&% \displaystyle\phantom{}\text{in }\Omega,\\ &\displaystyle a(x,\nabla u)\cdot\nu=\lambda m(x)|u|^{p(x)-2}u&&\displaystyle% \phantom{}\text{on }\partial\Omega,\end{aligned}\right.where {\Omega\subset\mathbb{R}^{N}}{(N\geq 2)} is a bounded domain of smooth boundary {\partial\Omega} and ν is the outward unit normal vector on {\partial\Omega}. The functions {m\in L^{\infty}(\partial\Omega)}, {p\colon\overline{\Omega}\mapsto\mathbb{R}} and {a\colon\overline{\Omega}\times\mathbb{R}^{N}\mapsto\mathbb{R}^{N}} satisfy appropriate conditions.


Sign in / Sign up

Export Citation Format

Share Document