EVALUATION OF THE NORMAL-STRESS CONDITION FOR CURVED LIQUID-GAS INTERFACES

Author(s):  
Charles B. Weinberger ◽  
John A. Tallmadge
2011 ◽  
Vol 90-93 ◽  
pp. 230-233
Author(s):  
Hong Chun Xia ◽  
Guo Qing Zhou ◽  
Ze Chao Du

The direct shear mechanical characteristics of gravel, sand and steel particle were studied systematically using DRS-1 high normal stress direct and residual shear apparatus. The results show that the shear mechanical characteristics of gravel, sand and steel particle is different under different normal stress condition. For steel particle, the curves of shear stress-shear displacement present strain softening regardless of the magnitude of normal stress, and the shear displacement corresponding to the peak shear stress increases with the normal stress. Under low normal stress condition, the volume of fine gravel and steel particle expand, but the fine sand contracts at the beginning of direct shear and then contracts. Under high normal stress condition, the volume of steel particle contracts at the beginning of the direct shear and then contracts, but the fine sand and fine gravel contract throughout the direct shear. The particle breakage has significant effect on the shear strength of fine sand and fine gravel. Under the same high normal stress condition, the volume of fine gravel is greater than that of fine sand, which indicates that the fine gravel is easier to be crushed than the fine sand.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Jun Xie ◽  
Yiqun Zhan ◽  
Yifan Wang

Insufficient shear performance in an asphalt mixture is a primary reason for rutting deformation and pavement surface longitudinal cracking. Thus, it is important to choose a suitable shear test method to evaluate shear performance in an asphalt mixture. Current testing methods mainly evaluate the bonding strength between asphalt layers, and the current shear test method for an asphalt mixture is disadvantaged by high equipment cost and complicated procedures. Our study proposes a torsional test method under normal stress condition, and evaluation was done for four types of asphalt mixture under different temperature conditions. Through the mechanical analysis, the calculation formulas for shear strength and shear parameters (cohesion and internal friction angle) for the torsional test under a normal stress condition were obtained. Testing results were also obtained for shear strength, shear modulus, and cohesion and internal friction angle of the asphalt mixtures. Experimental testing indicated that the method was able to provide repeatable results for the shear resistance of asphalt mixtures at different temperatures and also reflected the difference in shear performance of the various asphalt mixtures and the influence of temperature on shear performance. The failure mode of the specimen was the appearance of an oblique crack of about 45° from the vertical axis after the specimen was destroyed, which accorded with shear failure characteristics. A shear fatigue model was obtained considering different shear stress levels. The torsional test method under normal stress formed a compression-shear action on the specimen by applying torque and normal stress and was used to evaluate the shear performance of the asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document