scholarly journals Impact of Energy Storage on Cascade Mitigation in Multi-Energy Systems

Author(s):  
Mads R. Almassalkhi ◽  
Ian A. Hiskens
2021 ◽  
Vol 13 (9) ◽  
pp. 4681
Author(s):  
Khashayar Hamedi ◽  
Shahrbanoo Sadeghi ◽  
Saeed Esfandi ◽  
Mahdi Azimian ◽  
Hessam Golmohamadi

Growing concerns about global greenhouse gas emissions have led power systems to utilize clean and highly efficient resources. In the meantime, renewable energy plays a vital role in energy prospects worldwide. However, the random nature of these resources has increased the demand for energy storage systems. On the other hand, due to the higher efficiency of multi-energy systems compared to single-energy systems, the development of such systems, which are based on different types of energy carriers, will be more attractive for the utilities. Thus, this paper represents a multi-objective assessment for the operation of a multi-carrier microgrid (MCMG) in the presence of high-efficiency technologies comprising compressed air energy storage (CAES) and power-to-gas (P2G) systems. The objective of the model is to minimize the operation cost and environmental pollution. CAES has a simple-cycle mode operation besides the charging and discharging modes to provide more flexibility in the system. Furthermore, the demand response program is employed in the model to mitigate the peaks. The proposed system participates in both electricity and gas markets to supply the energy requirements. The weighted sum approach and fuzzy-based decision-making are employed to compromise the optimum solutions for conflicting objective functions. The multi-objective model is examined on a sample system, and the results for different cases are discussed. The results show that coupling CAES and P2G systems mitigate the wind power curtailment and minimize the cost and pollution up to 14.2% and 9.6%, respectively.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4284
Author(s):  
Min-Hwi Kim ◽  
Youngsub An ◽  
Hong-Jin Joo ◽  
Dong-Won Lee ◽  
Jae-Ho Yun

Due to increased grid problems caused by renewable energy systems being used to realize zero energy buildings and communities, the importance of energy sharing and self-sufficiency of renewable energy also increased. In this study, the energy performance of an energy-sharing community was investigated to improve its energy efficiency and renewable energy self-sufficiency. For a case study, a smart village was selected via detailed simulation. In this study, the thermal energy for cooling, heating, and domestic hot water was produced by ground source heat pumps, which were integrated with thermal energy storage (TES) with solar energy systems. We observed that the ST system integrated with TES showed higher self-sufficiency with grid interaction than the PV and PVT systems. This was due to the heat pump system being connected to thermal energy storage, which was operated as an energy storage system. Consequently, we also found that the ST system had a lower operating energy, CO2 emissions, and operating costs compared with the PV and PVT systems.


Author(s):  
Tu A. Nguyen ◽  
Raymond H. Byrne

Abstract Purpose of Review As the application space for energy storage systems (ESS) grows, it is crucial to valuate the technical and economic benefits of ESS deployments. Since there are many analytical tools in this space, this paper provides a review of these tools to help the audience find the proper tools for their energy storage analyses. Recent Findings There are many software tools for valuating ESS. These tools can be classified into two groups: (1) power system simulation and planning tools for analyzing the technical contributions of ESSs, and (2) techno-economic analysis tools for valuating the economic benefits of ESS deployment and specifying the optimal design of energy systems that include ESSs. While many of the tools, developed by the national laboratories, are free to use, the commercial tools are also of great importance in meeting the customers’ specific needs. Summary This paper provides a review of software tools for ESS valuation and design. A review of analysis tools for evaluating the technical impacts of energy storage deployments is also provided, as well as a discussion of development trends for valuation and design tools.


Sign in / Sign up

Export Citation Format

Share Document