Subspace Methods and Exploitation of Special Array Structures

Author(s):  
Martin Haardt ◽  
Marius Pesavento ◽  
Florian Roemer ◽  
Mohammed Nabil El Korso
Author(s):  
Ahmed Abdalla ◽  
Suhad Mohammed ◽  
Tang Bin ◽  
Jumma Mary Atieno ◽  
Abdelazeim Abdalla

This paper considers the problem of estimating the direction of arrival (DOA) for the both incoherent and coherent signals from narrowband sources, located in the far field in the case of uniform linear array sensors. Three different methods are analyzed. Specifically, these methods are Music, Root-Music and ESPRIT. The pros and cons of these methods are identified and compared in light of different viewpoints. The performance of the three methods is evaluated, analytically, when possible, and by Matlab simulation. This paper can be a roadmap for beginners in understanding the basic concepts of DOA estimation issues, properties and performance.


Author(s):  
Maria Trigka ◽  
Christos Mavrokefalidis ◽  
Kostas Berberidis

AbstractIn the context of this research work, we study the so-called problem of full snapshot reconstruction in hybrid antenna array structures that are utilized in mmWave communication systems. It enables the recovery of the snapshots that would have been obtained if a conventional (non-hybrid) uniform linear antenna array was employed. The problem is considered at the receiver side where the hybrid architecture exploits in a novel way the antenna elements of a uniform linear array. To this end, the recommended scheme is properly designed so as to be applicable to overlapping and non-overlapping architectures. Moreover, the full snapshot recoverability is addressed for two cases, namely for time-varying and constant signal sources. Simulation results are also presented to illustrate the consistency between the theoretically predicted behaviors and the simulated results, and the performance of the proposed scheme in terms angle-of-arrival estimation, when compared to the conventional MUSIC algorithm and a recently proposed hybrid version of MUSIC (H-MUSIC).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Young Jeong ◽  
Je-Ryung Lee ◽  
Hyeonjin Park ◽  
Joonkyo Jung ◽  
Doo-Sun Choi ◽  
...  

AbstractMicrowave absorbers using conductive ink are generally fabricated by printing an array pattern on a substrate to generate electromagnetic fields. However, screen printing processes are difficult to vary the sheet resistance values for different regions of the pattern on the same layer, because the printing process deposits materials at the same height over the entire surface of substrate. In this study, a promising manufacturing process was suggested for engraved resistive double square loop arrays with ultra-wide bandwidth microwave. The developed manufacturing process consists of a micro-end-milling, inking, and planing processes. A 144-number of double square loop array was precisely machined on a polymethyl methacrylate workpiece with the micro-end-milling process. After engraving array structures, the machined surface was completely covered with the developed conductive carbon ink with a sheet resistance of 15 Ω/sq. It was cured at room temperature. Excluding the ink that filled the machined double square loop array, overflowed ink was removed with the planing process to achieve full filled and isolated resistive array patterns. The fabricated microwave absorber showed a small radar cross-section with reflectance less than − 10 dB in the frequency band range of 8.0–14.6 GHz.


Author(s):  
Yuka Hashimoto ◽  
Takashi Nodera

AbstractThe Krylov subspace method has been investigated and refined for approximating the behaviors of finite or infinite dimensional linear operators. It has been used for approximating eigenvalues, solutions of linear equations, and operator functions acting on vectors. Recently, for time-series data analysis, much attention is being paid to the Krylov subspace method as a viable method for estimating the multiplications of a vector by an unknown linear operator referred to as a transfer operator. In this paper, we investigate a convergence analysis for Krylov subspace methods for estimating operator-vector multiplications.


Sign in / Sign up

Export Citation Format

Share Document