2D Antenna Array Structures for Hybrid Massive MIMO Precoding

Author(s):  
Mobeen Mahmood ◽  
Asil Koc ◽  
Tho Le-Ngoc
Author(s):  
Maria Trigka ◽  
Christos Mavrokefalidis ◽  
Kostas Berberidis

AbstractIn the context of this research work, we study the so-called problem of full snapshot reconstruction in hybrid antenna array structures that are utilized in mmWave communication systems. It enables the recovery of the snapshots that would have been obtained if a conventional (non-hybrid) uniform linear antenna array was employed. The problem is considered at the receiver side where the hybrid architecture exploits in a novel way the antenna elements of a uniform linear array. To this end, the recommended scheme is properly designed so as to be applicable to overlapping and non-overlapping architectures. Moreover, the full snapshot recoverability is addressed for two cases, namely for time-varying and constant signal sources. Simulation results are also presented to illustrate the consistency between the theoretically predicted behaviors and the simulated results, and the performance of the proposed scheme in terms angle-of-arrival estimation, when compared to the conventional MUSIC algorithm and a recently proposed hybrid version of MUSIC (H-MUSIC).


2018 ◽  
Vol 12 (2) ◽  
pp. 298-312 ◽  
Author(s):  
Lucas N. Ribeiro ◽  
Stefan Schwarz ◽  
Markus Rupp ◽  
Andre L. F. de Almeida

Author(s):  
Zhengxiang Ma ◽  
Leonard Piazzi ◽  
Huairen Yi ◽  
Hady Moussa ◽  
Renjian Zhao

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 521 ◽  
Author(s):  
Naser Ojaroudi Parchin ◽  
Haleh Jahanbakhsh Basherlou ◽  
Mohammad Alibakhshikenari ◽  
Yasser Ojaroudi Parchin ◽  
Yasir I. A. Al-Yasir ◽  
...  

A design of mobile-phone antenna array with diamond-ring slot elements is proposed for fifth generation (5G) massive multiple-input/multiple-output (MIMO) systems. The configuration of the design consists of four double-fed diamond-ring slot antenna elements placed at different corners of the mobile-phone printed circuit board (PCB). A low-cost FR-4 dielectric with an overall dimension of 75 × 150 mm2 is used as the design substrate. The antenna elements are fed by 50-Ohm L-shaped microstrip-lines. Due to the orthogonal placement of microstrip feed lines, the diamond-ring slot elements can exhibit the polarization and radiation pattern diversity characteristic. A good impedance bandwidth (S11 ≤ −10 dB) of 3.2–4 GHz has been achieved for each antenna radiator. However, for S11 ≤ −6 dB, this value is 3–4.2 GHz. The proposed design provides the required radiation coverage of 5G smartphones. The performance of the proposed MIMO antenna design is examined using both simulation and experiment. High isolation, high efficiency and sufficient gain-level characteristics have been obtained for the proposed MIMO smartphone antenna. In addition, the calculated total active reflection coefficient (TARC) and envelope correlation coefficient (ECC) of the antenna elements are very low over the whole band of interest which verify the capability of the proposed multi-antenna systems for massive MIMO and diversity applications. Furthermore, the properties of the design in Data-mode/Talk-mode are investigated and presented.


Sign in / Sign up

Export Citation Format

Share Document