AN ENDOGENOUS BACTERIAL PROTEASE SPECIFICALLY CLEAVES A FUSION PROTEIN JUNCTION CONSISTING OF CONSECUTIVE BASIC AMINO ACIDS TO GENERATE A BIOLOGICALLY-ACTIVE EUKARYOTIC ADHESIVE PROTEIN, BINDIN

Author(s):  
Charles G. Glabe ◽  
Sandra Brockman ◽  
Angelika Lopez ◽  
Ken Kimura ◽  
Laura Kennedy ◽  
...  
1987 ◽  
Vol 7 (10) ◽  
pp. 3386-3393 ◽  
Author(s):  
M Ittmann ◽  
A Greco ◽  
C Basilico

We have cloned the human genomic DNA and the corresponding cDNA for the gene which complements the mutation of tsBN51, a temperature-sensitive (Ts) cell cycle mutant of BHK cells which is blocked in G1 at the nonpermissive temperature. After transfecting human DNA into TsBN51 cells and selecting for growth at 39.5 degrees C, Ts+ transformants were identified by their content of human AluI repetitive DNA sequences. Following two additional rounds of transfection, a genomic library was constructed from a tertiary Ts+ transformant and a recombinant phage containing the complementing gene isolated by screening for human AluI sequences. A genomic probe from this clone recognized a 2-kilobase mRNA in human and tertiary transformant cell lines, and this probe was used to isolate a biologically active cDNA from the Okayama-Berg cDNA expression library. Sequencing of this cDNA revealed a single open reading frame encoding a polypeptide of 395 amino acids. The deduced BN51 gene product has a high proportion of acidic and basic amino acids which are clustered in four hydrophilic domains spaced at 60- to 80-amino-acid intervals. These domains have strong sequence homology to each other. Thus, the tsBN51 protein consists of periodic repetitive clusters of acidic and basic amino acids.


1987 ◽  
Vol 7 (10) ◽  
pp. 3386-3393
Author(s):  
M Ittmann ◽  
A Greco ◽  
C Basilico

We have cloned the human genomic DNA and the corresponding cDNA for the gene which complements the mutation of tsBN51, a temperature-sensitive (Ts) cell cycle mutant of BHK cells which is blocked in G1 at the nonpermissive temperature. After transfecting human DNA into TsBN51 cells and selecting for growth at 39.5 degrees C, Ts+ transformants were identified by their content of human AluI repetitive DNA sequences. Following two additional rounds of transfection, a genomic library was constructed from a tertiary Ts+ transformant and a recombinant phage containing the complementing gene isolated by screening for human AluI sequences. A genomic probe from this clone recognized a 2-kilobase mRNA in human and tertiary transformant cell lines, and this probe was used to isolate a biologically active cDNA from the Okayama-Berg cDNA expression library. Sequencing of this cDNA revealed a single open reading frame encoding a polypeptide of 395 amino acids. The deduced BN51 gene product has a high proportion of acidic and basic amino acids which are clustered in four hydrophilic domains spaced at 60- to 80-amino-acid intervals. These domains have strong sequence homology to each other. Thus, the tsBN51 protein consists of periodic repetitive clusters of acidic and basic amino acids.


2001 ◽  
Vol 120 (5) ◽  
pp. A142-A142
Author(s):  
J GASKEY ◽  
E SEIDEL

1983 ◽  
Vol 245 (4) ◽  
pp. R556-R563 ◽  
Author(s):  
J. K. Tews ◽  
A. E. Harper

Transport of histidine, valine, or lysine into rat brain slices and across the blood-brain barrier (BBB) was determined in the presence of atypical nonprotein amino acids. Competitors of histidine and valine transport in slices were large neutral amino acids including norleucine, norvaline, alpha-aminooctanoate, beta-methylphenylalanine, and alpha-aminophenylacetate. Less effective were aromatic amino acids with ring substituents; ineffective were basic amino acids and omega-amino isomers of norleucine and aminooctanoate. Lysine transport was moderately depressed by homoarginine or ornithine plus arginine; large neutral amino acids were also similarly inhibitory. Histidine or valine transport across the BBB was also strongly inhibited by large neutral amino acids that were the most effective competitors in the slices (norvaline, norleucine, alpha-aminooctanoate, and alpha-aminophenylacetate); homoarginine and 8-aminooctanoate were ineffective. Homoarginine, ornithine, and arginine almost completely blocked lysine transport, but the large neutral amino acids were barely inhibitory. When rats were fed a single meal containing individual atypical large neutral amino acids or homoarginine, brain pools of certain large neutral amino acids or of arginine and lysine, respectively, were depleted.


2019 ◽  
Vol 20 (18) ◽  
pp. 4416 ◽  
Author(s):  
Lara Console ◽  
Maria Tolomeo ◽  
Matilde Colella ◽  
Maria Barile ◽  
Cesare Indiveri

Background: the SLC52A2 gene encodes for the riboflavin transporter 2 (RFVT2). This transporter is ubiquitously expressed. It mediates the transport of Riboflavin across cell membranes. Riboflavin plays a crucial role in cells since its biologically active forms, FMN and FAD, are essential for the metabolism of carbohydrates, amino acids, and lipids. Mutation of the Riboflavin transporters is a risk factor for anemia, cancer, cardiovascular disease, neurodegeneration. Inborn mutations of SLC52A2 are associated with Brown-Vialetto-van Laere syndrome, a rare neurological disorder characterized by infancy onset. In spite of the important metabolic and physio/pathological role of this transporter few data are available on its function and regulation. Methods: the human recombinant RFVT2 has been overexpressed in E. coli, purified and reconstituted into proteoliposomes in order to characterize its activity following the [3H]Riboflavin transport. Results: the recombinant hRFVT2 showed a Km of 0.26 ± 0.07 µM and was inhibited by lumiflavin, FMN and Mg2+. The Riboflavin uptake was also regulated by Ca2+. The native protein extracted from fibroblast and reconstituted in proteoliposomes also showed inhibition by FMN and lumiflavin. Conclusions: proteoliposomes represent a suitable model to assay the RFVT2 function. It will be useful for screening the mutation of RFVT2.


1930 ◽  
Vol 86 (1) ◽  
pp. 107-111
Author(s):  
Hubert Bradford Vickery ◽  
Richard J. Block

1934 ◽  
Vol 104 (2) ◽  
pp. 347-350
Author(s):  
Richard J. Block ◽  
Daniel C. Darrow ◽  
M. Katherine Cary

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1301
Author(s):  
Ivonne Melano ◽  
Li-Lan Kuo ◽  
Yan-Chung Lo ◽  
Po-Wei Sung ◽  
Ni Tien ◽  
...  

Amino acids have been implicated with virus infection and replication. Here, we demonstrate the effects of two basic amino acids, arginine and lysine, and their ester derivatives on infection of two enveloped viruses, SARS-CoV-2, and influenza A virus. We found that lysine and its ester derivative can efficiently block infection of both viruses in vitro. Furthermore, the arginine ester derivative caused a significant boost in virus infection. Studies on their mechanism of action revealed that the compounds potentially disturb virus uncoating rather than virus attachment and endosomal acidification. Our findings suggest that lysine supplementation and the reduction of arginine-rich food intake can be considered as prophylactic and therapeutic regimens against these viruses while also providing a paradigm for the development of broad-spectrum antivirals.


1932 ◽  
Vol 98 (2) ◽  
pp. 783-788
Author(s):  
T.H. Jukes ◽  
H.D. Kay

Sign in / Sign up

Export Citation Format

Share Document