The Aging Muscle and Sarcopenia

Author(s):  
Emanuele Marzetti ◽  
Riccardo Calvani ◽  
Matteo Tosato ◽  
Francesco Landi
Keyword(s):  
Sarcopenia ◽  
2019 ◽  
pp. 109-131
Author(s):  
Katie Brown ◽  
Aaron Persinger ◽  
Melissa Puppa
Keyword(s):  

2019 ◽  
Vol 28 (3) ◽  
pp. 167-174
Author(s):  
Yang Du ◽  
Chorong Oh ◽  
Jaekyung No
Keyword(s):  

Aging ◽  
2014 ◽  
pp. 157-166 ◽  
Author(s):  
Mario Barbagallo ◽  
Ligia J. Dominguez

Author(s):  
Menezes JM ◽  
◽  
Paes AT ◽  
Frisoli-Junior A ◽  
◽  
...  

Introduction: Sarcopenia is a prevalent condition, and that is strongly associated with morbimortality outcomes. The optimal way to diagnose sarcopenia is currently a matter of debate. Despite evidence suggesting differences in body composition and physical performance of individuals from different regions, the diagnosis of sarcopenia in Brazil is still conducted using cutoff values established by international consensus. Therefore, the objective of this study was to establish cutoff values for appendicular muscle mass and muscle strength in a population of elderly outpatients with cardiovascular diseases from the city of São Paulo, using this data to compare populations with sarcopenia diagnosed in Brazil with individuals diagnosed using the European consensus values. Materials and Methods: This was a cross-sectional analysis including 502 older individuals from the SARCOS-Brazil study. All subjects underwent densitometry to assess muscle mass and measure strength using a manual dynamometer. The cutoff values for the SARCOS-Brazil criteria were obtained from the 25th percentile of each variable. Results and Discussion: There was no difference in the prevalence of muscle weakness using the two methods (180 patients, 35.9% of the sample). However, a difference was observed concerning low muscle mass. According to the European criteria, a total of 215 older individuals (42.8%) had low muscle mass and 123 (24.5%) according to the SARCOS-Brazil criteria. The prevalence of sarcopenia was 20.3% according to European criteria versus 13.7% according to the SARCOS-Brazil criteria. The kappa coefficient was 0.79. Conclusion: This study suggests that weakness and muscle mass can, in isolation, predict variables related to past vulnerability outcomes, as well as highlights the possibility of using regional cutoff values for the diagnosis of sarcopenia. Keywords: Sarcopenia; Aging; Muscle mass; Muscle strength


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael J. Petrany ◽  
Casey O. Swoboda ◽  
Chengyi Sun ◽  
Kashish Chetal ◽  
Xiaoting Chen ◽  
...  

AbstractWhile the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.


Author(s):  
Ben Kirk ◽  
Steven Phu ◽  
Danielle A. Debruin ◽  
Alan Hayes ◽  
Gustavo Duque
Keyword(s):  

2020 ◽  
Vol 21 (21) ◽  
pp. 8056 ◽  
Author(s):  
Ravikumar Manickam ◽  
Kalina Duszka ◽  
Walter Wahli

Skeletal muscle is a major metabolic organ that uses mostly glucose and lipids for energy production and has the capacity to remodel itself in response to exercise and fasting. Skeletal muscle wasting occurs in many diseases and during aging. Muscle wasting is often accompanied by chronic low-grade inflammation associated to inter- and intra-muscular fat deposition. During aging, muscle wasting is advanced due to increased movement disorders, as a result of restricted physical exercise, frailty, and the pain associated with arthritis. Muscle atrophy is characterized by increased protein degradation, where the ubiquitin-proteasomal and autophagy-lysosomal pathways, atrogenes, and growth factor signaling all play an important role. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of transcription factors, which are activated by fatty acids and their derivatives. PPARs regulate genes that are involved in development, metabolism, inflammation, and many cellular processes in different organs. PPARs are also expressed in muscle and exert pleiotropic specialized responses upon activation by their ligands. There are three PPAR isotypes, viz., PPARα, -β/δ, and -γ. The expression of PPARα is high in tissues with effective fatty acid catabolism, including skeletal muscle. PPARβ/δ is expressed more ubiquitously and is the predominant isotype in skeletal muscle. It is involved in energy metabolism, mitochondrial biogenesis, and fiber-type switching. The expression of PPARγ is high in adipocytes, but it is also implicated in lipid deposition in muscle and other organs. Collectively, all three PPAR isotypes have a major impact on muscle homeostasis either directly or indirectly. Furthermore, reciprocal interactions have been found between PPARs and the gut microbiota along the gut–muscle axis in both health and disease. Herein, we review functions of PPARs in skeletal muscle and their interaction with the gut microbiota in the context of muscle wasting.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lu-Ying Zhu ◽  
Li-Ming Yu ◽  
Wei-Hua Zhang ◽  
Jia-Jia Deng ◽  
Shang-Feng Liu ◽  
...  

Aging of population brings related social problems, such as muscle attenuation and regeneration barriers with increased aging. Muscle repair and regeneration depend on muscle stem cells (MuSCs). Obstructive sleep apnea (OSA) rises in the aging population. OSA leads to hypoxia and upper airway muscle injury. However, little is known about the effect of increasing age and hypoxia to the upper airway muscle. The genioglossus (GG) is the major dilator muscle to keep the upper airway open. Here, we reported that muscle fiber and MuSC function declined with aging in GG. Increasing age also decreased the migration and proliferation of GG MuSCs. p53 and p21 were high expressions both in muscle tissue and in GG MuSCs. We further found that hypoxia inhibited GG MuSC proliferation and decreased myogenic differentiation. Then, hypoxia enhanced the inhibition effect of aging to proliferation and differentiation. Finally, we investigated that hypoxia and aging interact to form a vicious circle with upregulation of p53 and p21. This vicious hypoxia plus aging damage accelerated upper airway muscle injury. Aging and hypoxia are the major damage elements in OSA patients, and we propose that the damage mechanism of hypoxia and aging in GG MuSCs will help to improve upper airway muscle regeneration.


Aging Cell ◽  
2015 ◽  
Vol 14 (4) ◽  
pp. 678-688 ◽  
Author(s):  
Ying Wang ◽  
Michelle Wehling‐Henricks ◽  
Giuseppina Samengo ◽  
James G. Tidball

Sign in / Sign up

Export Citation Format

Share Document