Classification of Extraction Methods

Author(s):  
Subhash C. Mandal ◽  
Vivekananda Mandal ◽  
Anup Kumar Das
Keyword(s):  
Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


MethodsX ◽  
2021 ◽  
Vol 8 ◽  
pp. 101166
Author(s):  
Timothy J. Fawcett ◽  
Chad S. Cooper ◽  
Ryan J. Longenecker ◽  
Joseph P. Walton

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Manab Kumar Das ◽  
Samit Ari

Classification of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease. This paper proposes the design of an efficient system for classification of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two different feature extraction methods are proposed for classification of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and WT based features along with temporal features. The extracted feature set is independently classified using multilayer perceptron neural network (MLPNN). The performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classifier are compared using five classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation) standards. The average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively. The experimental results demonstrate that the proposed feature extraction techniques show better performances compared to other existing features extraction techniques.


2009 ◽  
Vol 56 (3) ◽  
pp. 871-879 ◽  
Author(s):  
Stephen J. Preece ◽  
John Yannis Goulermas ◽  
Laurence P. J. Kenney ◽  
David Howard

2020 ◽  
Vol 37 (5) ◽  
pp. 812-822
Author(s):  
Behnam Asghari Beirami ◽  
Mehdi Mokhtarzade

In this paper, a novel feature extraction technique called SuperMNF is proposed, which is an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each superpixel has its own transformation matrix and MNF transformation is performed on each superpixel individually. The basic idea behind the SuperMNF is that each superpixel contains its specific signal and noise covariance matrices which are different from the adjacent superpixels. The extracted features, owning spatial-spectral content and provided in the lower dimension, are classified by maximum likelihood classifier and support vector machines. Experiments that are conducted on two real hyperspectral images, named Indian Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more promising results than some other feature extraction methods (MNF, PCA, SuperPCA, KPCA, and MMP).


2021 ◽  
Vol 39 (1B) ◽  
pp. 67-79
Author(s):  
Mauj H. Abd al kreem ◽  
Abd allameer A. Karim

Recent advances in computer vision have allowed wide-ranging applications in every area of ​​life. One such area of ​​application is the classification of fresh products, but the classification of fruits and vegetables has proven to be a complex problem and needs further development. In recent years, various machine learning techniques have been exploited with many methods of describing the different features of fruit and vegetable classification in many real-life applications. Classification of fruits and vegetables presents significant challenges due to similarities between layers and irregular characteristics within the class.Hence , in this work, three feature extractor/ descriptor which are local binary pattern (LBP), gray level co-occurrence matrix (GLCM) and, histogram of oriented gradient(HoG) has been proposed to extract fruite features , the  extracted  features have been saved in three feature vectors , then desicion tree classifier has been proposed to classify the fruit types. fruits 360 datasets  is  used  in this work,   where 70% of the dataset were used  in the training phase while 30% of it used in the testing phase. The three proposed feature extruction methods plus the tree  classifier have been used to  classifying  fruits 360 images, results show that the the three feature extraction methods  give a promising results , while the HoG method yielded a poerfull results in which  the accuracy obtained is 96%.


2021 ◽  
Author(s):  
Mark Abraham Magumba ◽  
Peter Nabende

Abstract Twitter and social media as a whole have great potential as a source of disease surveillance data however the general messiness of tweets presents several challenges for standard information extraction methods. Most deployed systems employ approaches that rely on simple keyword matching and do not distinguish between relevant and irrelevant keyword mentions making them susceptible to false positives as a result of the fact that keyword volume can be influenced by several social phenomena that may be unrelated to disease occurrence. Furthermore, most solutions are intended for a single language and those meant for multilingual scenarios do not incorporate semantic context. In this paper we experimentally examine a translation based approach that allows for incorporation of semantic context in multi-lingual disease surveillance in the social web.


Author(s):  
G. Rama Janani

The paper is based on classification of respiratory illness like covid 19 and pneumonia by using deep learning. The symptoms of COVID-19 and pneumonia are similar. Due to this, it is often difficult to identify what is causing your condition without being tested for COVID-19 or other respiratory infections. To find out how COVID-19 and pneumonia differs from one another, this paper presents that a novel Convolutional Neural Network in Tensor Flow and Keras based Covid-19 pneumonia classification. The proposed system supported implements CNN using Pneumonia images to classify the Covid-19, normal, pneumonia. The knowledge from these studies can potentially help in diagnosis of the concerned disease. It is predicted that the success of the anticipated results will increase if the CNN method is supported by adding extra feature extraction methods for classifying covid-19 and pneumonia successfully thereby improving the efficacy and potential of using deep CNN to pictures.


Sign in / Sign up

Export Citation Format

Share Document