Posttranslational Modification of Heterologous Human Therapeutics in Plant Host Expression Systems

2019 ◽  
pp. 145-169
Author(s):  
Ayyagari Archana ◽  
Lakshna Mahajan ◽  
Safikur Rahman ◽  
Rinki Minakshi
2020 ◽  
Vol 74 (6) ◽  
pp. 378-387
Author(s):  
Victoria V. Firstova ◽  
Igor G. Shemyakin ◽  
Ivan A. Dyatlov

The review presents a general description of therapeutic monoclonal antibodies, cell lines used to obtain them, characterizes the reasons for the immunogenicity of recombinant antibodies, and approaches used to eliminate the side effects of therapeutic monoclonal antibodies. The focus is on resolving the immunogenicity problems of fully human therapeutic monoclonal antibodies. The most attention are concentrated on the data of antibody-producing cell genomic editing to increase the yield of the product, the stability of expression of the recombinant protein and reduce its immunogenicity. Modern methods of site-directed modification (zinc finger method, TALEN and CRISPR/CAS9) for editing the genome of the CHO cell line are analyzed. The strategies of genomic editing choice carrying out taking into account the advances of omix technologies are discussed. Approaches to increase the life span of producer cells are considered, including an increase in the expression of anti-apoptotic signals and the deletion of proapoptotic genes, an increase in the duration of the cell cycle of cells in the G0/G1 phase. The approaches used to regulate the posttranslational modification of monoclonal antibodies are considered. Significant part of the review are devoted to the discussion of the spesificity and differences of glycosylation, galactosylation and sialization of monoclonal antibodies in different expression systems and the associated different degree of immunogenicity of monoclonal antibodies. The main approaches to the regulation of the synthesis of monoclonal antibodies at the stage of translation using non-coding RNA are considered.


Author(s):  
J. Metuzals

It has been demonstrated that the neurofibrillary tangles in biopsies of Alzheimer patients, composed of typical paired helical filaments (PHF), consist also of typical neurofilaments (NF) and 15nm wide filaments. Close structural relationships, and even continuity between NF and PHF, have been observed. In this paper, such relationships are investigated from the standpoint that the PHF are formed through posttranslational modifications of NF. To investigate the validity of the posttranslational modification hypothesis of PHF formation, we have identified in thin sections from frontal lobe biopsies of Alzheimer patients all existing conformations of NF and PHF and ordered these conformations in a hypothetical sequence. However, only experiments with animal model preparations will prove or disprove the validity of the interpretations of static structural observations made on patients. For this purpose, the results of in vitro experiments with the squid giant axon preparations are compared with those obtained from human patients. This approach is essential in discovering etiological factors of Alzheimer's disease and its early diagnosis.


2020 ◽  
Vol 36 (3) ◽  
pp. 34-45
Author(s):  
T.Yu. Mitiuchkina ◽  
A.S. Pushin ◽  
A.K. Tzareva ◽  
A.M. Vainstein ◽  
S.V. Dolgov

Artemisinin-based medicines are the most effective treatment for malaria. To date, the wormwood plants (Artemisia annua L.) are the main source of artemisinin. Due to the limited nature of this source, considerable efforts are directed towards the development of methods for artemisinin production via heterologous expression systems. We used in this study agrobacterial transformation to transfer the genetic module of the artemisinin biosynthesis pathway into plants and then analyzed its transcription in a heterologous host. Tobacco plants were transformed with the artemisinin biosynthesis genes encoding amorpha-4,11-diene synthase, artemisin-aldehyde All(13) reductase, amorpha-4,11-diene monooxygenase, cytochrome P450 reductase from A. annua and yeast 3-hydroxy-3-methylglutaryl-coenzyme A reductase cloned in the pArtemC vector; farnesyl diphosphate synthase and aldehyde dehydrogenase were used to transform the plants as parts of vector p2356. As a result of transformation with the pArtemC and p2356 vectors, in twos transgenic lines with all target genes were obtained. Five genes of artemisinin biosynthesis and two genes of biosynthesis of its precursors were successfully transferred into the genome of transgenic tobacco lines as a result of the co-transformation with abovementioned vectors. Thus, the entire artemisinin biosynthesis pathway was first reconstructed in heterologous plants: the transcription of the artemisinin biosynthesis genes in the tobacco plants was shown via RT-PCR. The obtained results will be used in further research on expression systems for the production of artemisinin and other non-protein substances in heterologous host plants. artemisinin, malaria, metabolic engineering, tobacco, transgenic plants This work was supported by a Grant from the Russian Science Foundation no. 19-14-00190.


Author(s):  
Angeles C. Tecalco–Cruz

Abstract:: Human interferon–stimulated gene 15 (ISG15) is a 15–kDa ubiquitin–like protein that can be detected as either free ISG15 or covalently associated with its target proteins through a process termed ISGylation. Interestingly, extracellular free ISG15 has been proposed as a cytokine–like protein, whereas ISGylation is a posttranslational modification. ISG15 is a small protein with implications in some biological processes and pathologies that include cancer. This review highlights the findings of both free ISG15 and protein ISGylation involved in several molecular pathways, emerging as central elements in some cancer types.


2010 ◽  
Vol 49 ◽  
pp. S158 ◽  
Author(s):  
Jose M Souza ◽  
Andrés Trostchansky ◽  
Carlos Batthyany ◽  
Rosario Durán ◽  
Bruce A Freeman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document