Baseline data for spill assessments: ambient conditions, socioeconomic data, sensitivity maps

2021 ◽  
pp. 1-25
Author(s):  
Lucy Romeo ◽  
Patrick Wingo ◽  
Michael Sabbatino ◽  
Jennifer Bauer
2000 ◽  
Vol 98 (3) ◽  
pp. 125-134 ◽  
Author(s):  
T. Weitkamp, J. Neuefeind, H. E. Fisch

2010 ◽  
Vol 28 (3) ◽  
pp. 245-248 ◽  
Author(s):  
J. T. Bried ◽  
N. A. Gifford
Keyword(s):  
New York ◽  

2014 ◽  
Author(s):  
Karin Amrein ◽  
Christian Muschitz ◽  
Doris Wagner ◽  
Thomas R Pieber ◽  
Heinrich Resch ◽  
...  

2000 ◽  
Vol 628 ◽  
Author(s):  
Mark A. Clarner ◽  
Michael J. Lochhead

ABSTRACTOrganically modified silica gels and dye-doped silica gels have been patterned into micrometer-scale structures on a substrate using micro molding in capillaries (MIMIC). This approach is from a class of elastomeric stamping and molding techniques collectively known as soft lithography. Soft lithography and sol-gel processing share attractive features in that they are relatively benign processes performed at ambient conditions, which makes both techniques compatible with a wide variety of organic molecules, molecular assemblies, and biomolecules. The combination of sol-gel and soft lithography, therefore, holds enormous promise as a tool for microfabrication of materials with optical, chemical, or biological functionality that are not readily patterned with conventional methods. This paper describes our investigation of micro-patterned organic-inorganic hybrid materials containing indicator dyes for microfluidic sensor applications. Reversible colorimetric pH sensing via entrapped reagents is demonstrated in a prototype microfluidic sensor element. Patterned structures range from one to tens of micrometers in cross-section and are up to centimeters in length. Fundamental chemical processing issues associated with mold filling, cracking and sensor stability are discussed.


2020 ◽  
Author(s):  
Kseniya A. Mariewskaya ◽  
Denis Larkin ◽  
Yuri Samoilichenko ◽  
Vladimir Korshun ◽  
Alex Ustinov

Molecular fluorescence is a phenomenon that is usually observed in condensed phase. It is strongly affected by molecular interactions. The study of fluorescence spectra in the gas phase can provide a nearly-ideal model for the evaluation of intrinsic properties of the fluorophores. Unfortunately, most conventional fluorophores are not volatile enough to allow study of their fluorescence in the gas phase. Here we report very bright gas phase fluorescence of simple BODIPY dyes that can be readily observed at atmospheric pressure using conventional fluorescence instrumentation. To our knowledge, this is the first example of visible range gas phase fluorescence at near ambient conditions. Evaporation of the dye in vacuum allowed us to demonstrate organic molecular electroluminescence in gas discharge excited by electric field produced by a Tesla coil.


Sign in / Sign up

Export Citation Format

Share Document