scholarly journals Foreword: Ni-base superalloy single crystals, a fascinating class of high temperature engineering materials

2022 ◽  
pp. xiii-xvii
Author(s):  
Georges Cailletaud ◽  
Gunther Eggeler
1986 ◽  
Vol 81 ◽  
Author(s):  
D. M. Shah ◽  
D. N. Duhl

AbstractMulticomponent nickel base intermetallics with the L12 structure were evaluated as high temperature structural materials. The compounds were based on the γ' composition of PWA 1480, a high strength single crystal nickel base superalloy. The best balance of properties in the compound was achieved with <111> oriented single crystals but no significant advantage could be demonstrated over the precipitation hardened superalloys. Insufficient impact resistance was a major deficiency of the L12 compounds. Other nickel base intermetallics were also evaluated but showed little advantage over superalloys.


Author(s):  
A. Garg ◽  
R. D. Noebe ◽  
R. Darolia

Small additions of Hf to NiAl produce a significant increase in the high-temperature strength of single crystals. Hf has a very limited solubility in NiAl and in the presence of Si, results in a high density of G-phase (Ni16Hf6Si7) cuboidal precipitates and some G-platelets in a NiAl matrix. These precipitates have a F.C.C structure and nucleate on {100}NiAl planes with almost perfect coherency and a cube-on-cube orientation-relationship (O.R.). However, G-phase is metastable and after prolonged aging at high temperature dissolves at the expense of a more stable Heusler (β'-Ni2AlHf) phase. In addition to these two phases, a third phase was shown to be present in a NiAl-0.3at. % Hf alloy, but was not previously identified (Fig. 4 of ref. 2 ). In this work, we report the morphology, crystal-structure, O.R., and stability of this unknown phase, which were determined using conventional and analytical transmission electron microscopy (TEM).Single crystals of NiAl containing 0.5at. % Hf were grown by a Bridgman technique. Chemical analysis indicated that these crystals also contained Si, which was not an intentional alloying addition but was picked up from the shell mold during directional solidification.


2020 ◽  
Author(s):  
E. E. Timofeeva ◽  
E. Yu. Panchenko ◽  
A. S. Eftifeeva ◽  
E. I. Yanushonite ◽  
M. V. Zherdeva ◽  
...  

2015 ◽  
Vol 658 ◽  
pp. 14-18
Author(s):  
Tanaporn Rojhirunsakool ◽  
Duangkwan Thongpian ◽  
Nutthita Chuankrerkkul ◽  
Panyawat Wangyao

Nickel-base superalloys have been used as high temperature materials in land-base gas turbine application. When subjected to long term, high temperature service, large crack propagation was observed. Typical refurbishment method of these turbines is carried out by using TIG welding followed by post-weld standard heat treatment. However, new crack initiation is found in the heat-affected zone after TIG welding. Pre-weld heat treatment has been discovered to improves final γ + γ’ microstructure. This study focuses on the effect of pre-weld heat treatment temperature on final γ + γ’ microstructure. Seven different conditions of pre-weld heat treatment temperature were investigated. Scanning electron microscopy studies were carried out after pre-weld and post-weld heat treatments to compare the γ + γ’ microstructure and capture microcracks. The best pre-weld heat treatment temperature produces uniform distribution of finely dispersed γ’ precipitates in the γ matrix without post-weld crack.


2006 ◽  
Vol 89 (23) ◽  
pp. 232509 ◽  
Author(s):  
S. M. Rao ◽  
K. J. Wang ◽  
N. Y. Yen ◽  
Y. Y. Chen ◽  
C. B. Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document