Bioactive glasses and ceramics for tissue engineering

2022 ◽  
pp. 111-178
Author(s):  
Marcela Arango-Ospina ◽  
Aldo R. Boccaccini
2017 ◽  
Vol 101 (2) ◽  
pp. 602-611 ◽  
Author(s):  
Oliwia Jeznach ◽  
Marcin Gajc ◽  
Karolina Korzeb ◽  
Andrzej Kłos ◽  
Krzysztof Orliński ◽  
...  

2020 ◽  
Vol 547 ◽  
pp. 120293 ◽  
Author(s):  
A. Feraru ◽  
Zs.R. Tóth ◽  
K. Magyari ◽  
Zs. Pap ◽  
M. Todea ◽  
...  

2014 ◽  
Vol 8 (4) ◽  
pp. 275-281 ◽  
Author(s):  
Chunhui Bian ◽  
Huiming Lin ◽  
Feng Zhang ◽  
Jie Ma ◽  
Fengxiao Li ◽  
...  

2019 ◽  
Vol 10 (3) ◽  
pp. 38 ◽  
Author(s):  
Hamasa Faqhiri ◽  
Markus Hannula ◽  
Minna Kellomäki ◽  
Maria Teresa Calejo ◽  
Jonathan Massera

This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4 (BonAlive ®), as confirmed using thermogravimetric analysis. MicrO–Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2711
Author(s):  
Ana S. Neto ◽  
Daniela Brazete ◽  
José M.F. Ferreira

The combination of calcium phosphates with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The initial CB structure was maintained after hydrothermal transformation (HT) and the scaffold functionalization did not jeopardize the internal structure. The results of the in-vitro bioactivity after immersing the BG coated scaffolds in simulated body fluid (SBF) for 15 days showed the formation of apatite on the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties, but further assessment of the in-vitro biological properties is needed before being considered for their use in bone tissue engineering applications.


Author(s):  
Douglas Timothy ◽  
Piwowarczyk Wojciech ◽  
Liskova Jana ◽  
Schaubroeck David ◽  
Leeuwenburgh Sander ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document