Neutral-point-clamped and T-type multilevel inverters

2021 ◽  
pp. 29-56
Author(s):  
Hasan Komurcugil ◽  
Sertac Bayhan
2010 ◽  
Vol 57 (7) ◽  
pp. 2297-2306 ◽  
Author(s):  
Diorge A B Zambra ◽  
Cassiano Rech ◽  
José Renes Pinheiro

Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 167 ◽  
Author(s):  
Jin-Wook Kang ◽  
Seung-Wook Hyun ◽  
Jae-Ok Ha ◽  
Chung-Yuen Won

This paper investigates the fault-tolerance control of a multilevel cascaded NPC/H-bridge (CNHB) inverter. The fault-tolerance control method has been widely used for multilevel inverters, such as the neutral-point voltage-shifting control, which can operate for a certain period of time by compensating for the phase voltage of a faulty stack even if one stack is broken. Even though the three-phase equilibrium is maintained in the case of failure by using the conventional neutral-point voltage-shifting control, an imbalance in the output power occurs between each stack, which causes problems for maintenance and lifetime. Therefore, this paper proposes a fault-tolerance control that can maintain three-phase equilibrium in a case of stack failures and minimize power imbalances between the stacks. The problem of the conventional neutral-point voltage-shifting control is presented based on the output power. In addition, the power imbalance is improved by performing selective neutral-point voltage-shifting control according to the reference voltage range. To verify the principle and feasibility of the proposed neutral-point voltage-shifting control method, a simulation and an experiment are implemented with the CNHB inverter.


Author(s):  
F.X. Edwin Deepak ◽  
V. Rajasekaran

Purpose The purpose of this paper is to present the three phase seven-level Z-source neutral point clamped (NPC) inverter with multicarrier pulse-width modulation (PWM) technique. Despite numerous topologies and modulation methods, there is a dire need of developing PWM techniques that can be deployed in multilevel inverters. These inverters decrease the total harmonic distortion and it has a good performance for various electrical power system applications. The proposed inverter is investigated for its performance by executing it in shoot through and non-shoot through modes. Design/methodology/approach The purpose is validated through MATLAB/Simulink software platform for implementing the proposed seven-level Z-source NPC inverter outlined with multicarrier based phase disposition technique. The experimental results are verified using SPARTAN 3E FPGA controller with the same control strategy. Findings The efficiency of the proposed inverter is confirmed in terms of increased and faster conversion in the shoot-through mode. By using PDPWM technique the maximum boost gain is achieved with lower modulation index. High control of DC voltage is obtained with only one DC voltage source and one Z network. Originality/value Three phase multilevel inverters are widely used in improving the output voltage quality and reducing the encountered electromagnetic interference in electronic device or circuitry. They are employed in medium and high –power applications to attain increased power ratings while decreasing the switching losses. The performance results shown in this paper will satisfy the above needs of usage in certain applications and less switching losses.


2012 ◽  
Vol 22 (1) ◽  
pp. 107-120
Author(s):  
D. Beriber ◽  
A. Talha ◽  
M. Boucherit

Stabilization of multi DC bus link voltages of multilevel NPC VSI. Application to double stator induction motors Voltage source multilevel inverters have become very attractive for power industries in power electronics applications during last years. The main purposes of studying multilevel inverters are the generation of output voltage signals with low harmonic distortion and reduction of switching frequency. An important issue of the multilevel inverter is the capacitor voltage-balancing problem. The unbalance of different DC voltage sources of multilevel neutral point clamped (NPC) voltage source inverter (VSI) constitutes the major limitation for the use of this new power converter. In this paper, we present study on the stability problem of the input DC voltages of the three-level Neutral Point Clamping (NPC) voltage source inverter (VSI). This inverter is useful for application in high voltage and high power area. In the first part, we remind the model of double stator induction motors (DSIM). Then, we develop control models of this inverter using the connection functions of the semi-conductors. We propose a Pulse Width Modulation (PWM) strategy to control this converter. The inverter is fed by constant input DC voltages. In the last part, we study the stability problem of the input DC voltages of the inverter. A cascade constituted by two three-level PWM rectifiers - two three-level NPC VSI - DSIM is discussed. The results obtained show that the input DC voltages of the inverters are not stable. To solve this problem, we propose to use a half clamping bridge. This solution is very promising in order to stabilize the input DC voltages of this converters.


Sign in / Sign up

Export Citation Format

Share Document