Experimental investigations of the characteristics of the boundary layer on a smooth rigid plate

Author(s):  
Viktor V. Babenko
Author(s):  
K. Bammert ◽  
R. Milsch

Blades of axial flow compressors are often roughened by corrosion or erosion. There is only scant information about the influence of this roughening on the boundary layers of the blades and thereby on the compressor efficiency. To obtain detailed information for calculating the efficiency drop due to the roughness, experimental investigations with an enlarged cascade have been executed. The results enabled to develop new formulas for a modified friction coefficient in the laminar region and for the laminar-turbulent transition and the separation points of the boundary layer. Thus, together with the Truckenbrodt theory, it was possible, to get a good reproduction of the experimental results.


Author(s):  
Tobias Schubert ◽  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract A particular turbine cascade design is presented with the goal of providing a basis for high quality investigations of endwall flow at high-speed flow conditions and unsteady inflow. The key feature of the design is an integrated two-part flat plate serving as a cascade endwall at part-span, which enables a variation of the inlet endwall boundary layer conditions. The new design is applied to the T106A low pressure turbine cascade for endwall flow investigations in the High-Speed Cascade Wind Tunnel of the Institute of Jet Propulsion at the Bundeswehr University Munich. Measurements are conducted at realistic flow conditions (M2th = 0.59, Re2th = 2·105) in three cases of different endwall boundary layer conditions with and without periodically incoming wakes. The endwall boundary layer is characterized by 1D-CTA measurements upstream of the blade passage. Secondary flow is evaluated by Five-hole-probe measurements in the turbine exit flow. A strong similarity is found between the time-averaged effects of unsteady inflow conditions and the effects of changing inlet endwall boundary layer conditions regarding the attenuation of secondary flow. Furthermore, the experimental investigations show, that all design goals for the improved T106A cascade are met.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


2018 ◽  
Vol 32 (08) ◽  
pp. 1850108 ◽  
Author(s):  
Xi Geng ◽  
Zhiwei Shi ◽  
Keming Cheng ◽  
Hao Dong ◽  
Qun Zhao ◽  
...  

Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.


Author(s):  
Jenny Baumann ◽  
Ulrich Rist ◽  
Martin Rose ◽  
Tobias Ries ◽  
Stephan Staudacher

The reduction of blade counts in the LP turbine is one possibility to cut down weight and therewith costs. At low Reynolds numbers the suction side laminar boundary layer of high lift LP turbine blades tends to separate and hence cause losses in turbine performance. To limit these losses, the control of laminar separation bubbles has been the subject of many studies in recent years. A project is underway at the University of Stuttgart that aims to suppress laminar separation at low Reynolds numbers (60,000) by means of actuated transition. In an experiment a separating flow is influenced by disturbances, small in amplitude and of a certain frequency, which are introduced upstream of the separation point. Small existing disturbances are therewith amplified, leading to earlier transition and a more stable boundary layer. The separation bubble thus gets smaller without need of a high air mass flow as for steady blowing or pulsed vortex generating jets. Frequency and amplitude are the parameters of actuation. The non-dimensional actuation frequency is varied from 0.2 to 0.5, whereas the normalized amplitude is altered between 5, 10 and 25% of the free stream velocity. Experimental investigations are made by means of PIV and hot wire measurements. Disturbed flow fields will be compared to an undisturbed one. The effectiveness of the presented boundary layer control will be compared to those of conventional ones. Phase-logged data will give an impression of the physical processes in the actuated flow.


2001 ◽  
Vol 426 ◽  
pp. 73-94 ◽  
Author(s):  
A. A. MASLOV ◽  
A. N. SHIPLYUK ◽  
A. A. SIDORENKO ◽  
D. ARNAL

Experimental investigations of the boundary layer receptivity, on the sharp leading edge of a at plate, to acoustic waves induced by two-dimensional and three- dimensional perturbers, have been performed for a free-stream Mach number M∞ = 5.92. The fields of controlled free-stream disturbances were studied. It was shown that two-dimensional and three-dimensional perturbers radiate acoustic waves and that these perturbers present a set of harmonic motionless sources and moving sources with constant amplitude. The disturbances excited in the boundary layer were measured. It was found that acoustic waves impinging on the leading edge generate Tollmien–Schlichting waves in the boundary layer. The receptivity coefficients were obtained for several radiation conditions and intensities. It was shown that there is a dependence of receptivity coefficients on the wave inclination angles.


1985 ◽  
Vol 107 (4) ◽  
pp. 877-882 ◽  
Author(s):  
Y. Kamotani ◽  
J. K. Lin ◽  
S. Ostrach

Experimental investigations of the effect of destabilizing heating on the vortex instability in a laminar boundary-layer flow of air along a concave surface are reported. The ranges of the parameters studied herein are Gr (Grashof number) from 0 to 70 and G (Go¨rtler number) from 0.46 to 9.0. The wavelength of the vortices remains unchanged with heating but the strength of the vortices is enhanced by heating. The amplitude of the vortices increases almost exponentially with the combined parameter (G2 + f Gr)1/2, where f is found to be between 0.3 and 0.4, until the nonlinear effects become important. In the nonlinear region the original sinusoidal wave form of the vortices becomes distorted and they meander in the lateral direction.


Author(s):  
Andrea Cattanei ◽  
Pietro Zunino ◽  
Thomas Schro¨der ◽  
Bernd Stoffel ◽  
Berthold Matyschok

In the framework of a co-operation between the University of Genoa and the Darmstadt University of Technology measurement data of a former investigation at Darmstadt, comprising measurements with surface-mounted hot-film sensors on the boundary layer transition in wake disturbed flow, were transferred to Genoa, then re-evaluated and in great detail analyzed, much further than the original data evaluation. In these experimental investigations at Darmstadt, the boundary layer transition with and without transitional separation bubbles was studied on a circular cylinder in cross flow. The comparison of hot-wire traverses with the surface-mounted hot-film distributions clearly indicated that the surface-mounted hot-film technique is a very suitable measurement technique to obtain reliable information on transition and separation phenomena with both high spatial and temporal resolution. The new data evaluation techniques applied to these data at Genoa further enhanced the insight into the details of the boundary layer transition and separation process. The surface-mounted hot-film data were evaluated by means of time-space diagrams for the first three statistical moments (mean, RMS and skewness), with which the origin and the extent of unsteady separation bubbles clearly could be seen. The results obtained from these data analyses on the one hand yield a considerable enhancement of the understanding of the periodically unsteady boundary layer transition process and on the other hand they form the basis for the application of surface-mounted hot-film sensors in more complex flow situations like e.g. in cold flow multistage turbine or compressor test rigs or even in the hostile environment of real aero engine compressors or turbines.


Sign in / Sign up

Export Citation Format

Share Document