Direct stiffness–strength method design for cold-formed steel structural members with sheathing bracing

2022 ◽  
pp. 437-478
Author(s):  
M. Madhavan ◽  
S. Selvaraj
2011 ◽  
Vol 473 ◽  
pp. 343-351 ◽  
Author(s):  
Iveta Georgieva ◽  
Luc Schueremans ◽  
Guido De Roeck ◽  
Lincy Pyl

The construction industry uses cold-formed steel (CFS) sheets in the form of galvanised thin-walled profiles and corrugated sheets. In the past decade, CFS profiles have been competing with their hot-rolled counterparts as primary structural members of industrial halls, office buildings and residential housing of up to 3-4 storeys. The spans and column heights achieved with CFS profiles are ever larger. Due to the large slenderness of these members, adequate strength and stability are necessary, as well as reliability in design. Thin-walled members go through buckling during all stages of their working life. Local buckling appears at loads sometimes much lower than the design load. Distortional buckling seriously reduces the member resistance. It interacts with warping and lateral-torsional buckling, being significant for these asymmetric open sections. To restrict these effects, builders employ double sections - usually two standard cold-formed shapes bolted together to form a built-up section. These sections have the advantages of symmetry, higher stability and strength. The design of built-up members involves many uncertainties - although the European standard includes guidelines on the prediction of local, distortional and global buckling, the partial integrity and interaction between the parts of the composed members is still not studied. To study the actual behaviour, built-up members are tested in bending. An optical device for 3D motion analysis measures the displacement of points of interest on the specimen. Two interacting cameras use parallax to obtain the position of an arbitrary number of reflective markers glued to the specimen. The device tracks the movement of the markers in a 3D coordinate system without any contact with the specimen. Standard displacement transducers measure vertical displacements to validate the results. The paper gives an appraisal of the applicability of the method, a summary of the difficulties faced and the outcome of the test campaign.


Author(s):  
Vishnu Vardan.A ◽  
Kaarthik. M

There are two structural members used in steel construction the hot rolled members and the cold formed members. They are light members compared to the traditional heavier hot rolled steel structural members used in the field. They have high strength to weight ratio resulting in less dead weight making it a good option in construction of bridges roof trusses transmission line towers multi storied buildings and other structural members. This paper is done to understand the flexural capacity and to enhance it by developing innovative latticed cold formed steel beam. The impact of web opening of the cold formed beam on the flexural behavior of cold formed built-up I section under two point loading is investigated for the simply supported end conditions. Numerical analysis is performed using finite element analysis (FEM) software. From results, the load vs. Deflection curve, failure modes and ultimate load carrying capacity of the specimen presented in this paper. Therefore the main focus of this project is to investigate the flexural behavior of these steel members and by replacing the lattice hot rolled section by cold formed steel sections. The ultimate load carrying capacity with failure mode of simulated FEA models was compared with experimental results.


2010 ◽  
Vol 163-167 ◽  
pp. 90-101 ◽  
Author(s):  
Xing You Yao ◽  
Yuan Qi Li ◽  
Zu Yan Shen

Distortional buckling may occur for Cold-formed thin-walled steel lipped channel member except local buckling and overall buckling. The buckling of flange and lip are the important factor for the occurrence the distortional buckling. The different design codes have different design method for calculating plate buckling coefficient of flange and lip using the effective width method. So the effective width method in different codes are introduced and the load-carrying capacities of 100 lipped channel section compressive members collected from reference are computed using ‘Cold-formed steel structures (AS/NZS 4600:2005)’, ‘Supplementary rules for cold-formed members and sheeting(EN1993-1-3:2006)’, ‘North American specification for the design of cold-formed steel Structural Members(AISI-S100:2007)’, ‘Specification for the design of cold-formed steel structural members (AISI:1996)’ and ‘Technical code of cold-formed thin-walled steel structures’(GB50018-2002). The calculated results show that ‘Technical code of cold-formed thin-walled steel structures (GB50018-2002)’ and ‘Supplementary rules for cold-formed members and sheeting (EN1993-1-3:2006)’ are conservative and ‘Cold-formed steel structures (AS/NZS 4600:2005)’, ‘North American specification for the design of cold-formed steel Structural Members (AISI-S100:2007)’ and ‘Specification for the design of cold-formed steel structural members (AISI:1996)’ are unsafe. The elastic buckling stress of different lipped channel sections are predicted by finite strip program (CUFSM) and get the suggested calculation formula of plate buckling coefficient of flange according to regression Analysis. The calculated results using suggested plate buckling coefficient of flange are agree to test results.


1992 ◽  
Vol 19 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Aaron S. Dinovitzer

The lip dimension of cold formed steel C-sections (channels) is optimized according to the provisions of CSA Standard CAN/CSA-S136-M89 "Cold formed steel structural members." The provisions in the 1989 edition of S136 are compared with those of the 1984 edition. Due to changes in design criteria, previously optimal sections are no longer optimal. The interaction of many of the elements is described and the manner in which the design standard takes the interaction into account is discussed. The lip sizes of C-sections are optimized in order to maximize flexural resistance and minimize cross-sectional area. An optimal C-section is one in which the flange is nearest to being fully effective. The optimal geometry generally has a lip-to-flange ratio of 3/8, which is restricted by a maximum lip flat width of 14 times the steel thickness. An optimal section based on the 1989 edition of S136 has a lower flexural resistance and a longer lip than an optimal C-section based on the 1984 edition of S136. Due to certain changes in the 1989 edition of S136, cold work of forming is now applicable in fewer cases than previously allowed by the 1984 edition of S136. Key words: cold formed steel, effective width, stiffener, lip, C-section, channel, optimization.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Balaji Shanmugam ◽  
Manikandan Palanisamy ◽  
Paul O. Awoyera ◽  
Senthilnathan Chinnasamy ◽  
Mahalakshmi Subramaniam

This paper deals with a study conducted on flexural behavior of cold-formed steel built-up I-beams with hollow tubular flange sections. There were two types of test sections, namely, built-up sections that were assembled with either stiffened or unstiffened channels coupling back-to-back at the web and a hollow tubular rectangular flange at the top and bottom of the web to form built-up I-beam. The flexural behavior along with the strength and failure modes of the built-up sections was examined using the four-point loading system. Nonlinear finite element (FE) models were formulated and validated with the experimental test results. It was observed that the developed FE models had precisely predicted the behavior of built-up I-beams. Further, the verified FE models were used to conduct a detailed parametric study on cold-formed steel built-up beam sections with respect to thickness, depth, and yield stress of the material. The flexural strength of the beams was designed using the direct strength method as specified in American Iron and Steel Institute (AISI) for the design of cold-formed steel structural members and was compared with the experimental results and the failure loads predicted from FE models. Since the results were not conservative, a new customized design equation had been mooted and delineated in the study for determining the flexural strength of cold-formed steel built-up beams with hollow tubular flange sections.


Sign in / Sign up

Export Citation Format

Share Document