Influence of fly ash in physical and mechanical properties of recycled aggregate concrete

2022 ◽  
pp. 25-37
Author(s):  
Adeyemi Adesina ◽  
Paul O. Awoyera
2011 ◽  
Vol 477 ◽  
pp. 280-289 ◽  
Author(s):  
Shao Wei Yao ◽  
Zhen Guo Gao ◽  
Chang Rui Wang

The properties of recycled coarse aggregate and the slump, the physical and mechanical properties and durability of recycled aggregate concrete were studied through tests. The results indicate that the slump, compressive strength and durability of concrete with recycled aggregate are lower than that of concrete with natural aggregate when recycled coarse aggregate fully absorbs water. However, the slump can be similar to that of concrete with natural aggregate. The properties of recycled aggregate concrete can be improved by strengthening the recycled coarse aggregate, and it is also found that the recycled coarse aggregate strengthened by grinding is superior to that soaked by chemical solution.


2020 ◽  
Vol 10 (18) ◽  
pp. 6454
Author(s):  
Valeria Corinaldesi ◽  
Jacopo Donnini ◽  
Chiara Giosué ◽  
Alessandra Mobili ◽  
Francesca Tittarelli

The possibility of producing high-volume fly ash (HVFA) recycled aggregate concrete represents an important step towards the development of sustainable building materials. In fact, there is a growing need to reduce the use of non-renewable natural resources and, at the same time, to valorize industrial by-products, such as fly ash, that would otherwise be sent to the landfill. The present experimental work investigates the physical and mechanical properties of concrete by replacing natural aggregates and cement with recycled aggregates and fly ash, respectively. First, the mechanical properties of four different mixtures have been analyzed and compared. Then, the effectiveness of recycled aggregate and fly ash on reducing carbonation and chloride penetration depth has been also evaluated. Finally, the corrosion behavior of the different concrete mixtures, reinforced with either bare or galvanized steel plates, has been evaluated. The results obtained show that high-volume fly ash (HVFA) recycled aggregate concrete can be produced without significative reduction in mechanical properties. Furthermore, the addition of high-volume fly ash and the total replacement of natural aggregates with recycled ones did not modify the corrosion behavior of embedded bare and galvanized steel reinforcement.


2013 ◽  
Vol 647 ◽  
pp. 748-752 ◽  
Author(s):  
Min Hou ◽  
Lang Li ◽  
Jiang Feng Dong ◽  
Qing Yuan Wang

This paper presents the experimental results of recycled aggregate concrete filled steel tube columns prepared with different amount of recycled coarse aggregate (RCA) subjected to axial loading. The recycled coarse aggregates are obtained from the earthquake waste in Sichuan. Based on the studying of the physical and mechanical properties of recycled coarse aggregate, the mechanical property of recycled aggregate concrete (RAC) with five concrete mixes with 0%, 25%, 50%, 75% and 100% RCA respectively are prepared. The behaviour of the circular solid steel tube columns are studied in terms of the load carrying capacity, ductility and strain response under axial compressive loading in addition to the physical and mechanical characteristics of RCA and RAC. The results show that the steel tube column gives lower ultimate bearing capacities when the RCA were added. However, no obvious difference on the failure modes were found between the steel tube columns filled with recycled aggregate concrete and normal concrete.


2006 ◽  
Vol 302-303 ◽  
pp. 314-320
Author(s):  
Yi Jin Li ◽  
Shi Qiong Zhou ◽  
Jian Yin ◽  
Jun Li

The subject of concrete recycling is regarded as very important in the general attempt for sustainable development in our times. Due to a wide range of variability of engineering properties for recycled concrete, a large number of experiments are usually required to decide a suitable mixture. Within the scope of this study, 13 different concrete mixtures were manufactured. The amount of recycled concrete aggregate (RCA) were 0 %, 20 %, 40 %, 60 %, 80 %, and 100 %, respectively. The replacement levels of ultra-fine fly ash are 0 %, 15 %, 25 %, 35 % and 50 %, respectively. The physical and mechanical properties along with their workability of concrete produced with RCA and ultra-fine fly ash were investigated. The experiment results showed that ultra-fine fly ash replacement had an important effect on performance of concrete with different amount of RCA.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


Sign in / Sign up

Export Citation Format

Share Document