Proteolytic processing in autophagy

2022 ◽  
pp. 81-91
Author(s):  
João Agostinho Machado-Neto ◽  
Andrei Leitão
2002 ◽  
Vol 38 ◽  
pp. 37-49 ◽  
Author(s):  
Janelle Nunan ◽  
David H Small

The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.


2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


1989 ◽  
Vol 264 (16) ◽  
pp. 9107-9110
Author(s):  
C López-Otín ◽  
C Simón-Mateo ◽  
L Martínez ◽  
E Viñuela

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sabine Probst ◽  
Florian Riese ◽  
Larissa Kägi ◽  
Maik Krüger ◽  
Natalie Russi ◽  
...  

AbstractProteolytic processing of the amyloid precursor protein (APP) releases the APP intracellular domain (AICD) from the membrane. Bound to the APP adaptor protein Fe65 and the lysine acetyltransferase (KAT) Tip60, AICD translocates to the nucleus. Here, the complex forms spherical condensates at sites of endogenous target genes, termed AFT spots (AICD-Fe65-Tip60). We show that loss of Tip60 KAT activity prevents autoacetylation, reduces binding of Fe65 and abolishes Fe65-mediated stabilization of Tip60. Autoacetylation is a prerequisite for AFT spot formation, with KAT-deficient Tip60 retained together with Fe65 in speckles. We identify lysine residues 204 and 701 of Fe65 as acetylation targets of Tip60. We do not detect acetylation of AICD. Mutation of Fe65 K204 and K701 to glutamine, mimicking acetylation-induced charge neutralization, increases the transcriptional activity of Fe65 whereas Tip60 inhibition reduces it. The lysine deacetylase (KDAC) class III Sirt1 deacetylates Fe65 and pharmacological modulation of Sirt1 activity regulates Fe65 transcriptional activity. A second acetylation/deacetylation cycle, conducted by CBP and class I/II KDACs at different lysine residues, regulates stability of Fe65. This is the first report describing a role for acetylation in the regulation of Fe65 transcriptional activity, with Tip60 being the only KAT tested that supports AFT spot formation.


Sign in / Sign up

Export Citation Format

Share Document