Dynamic response of floating structures in waves

Author(s):  
Minoo H Patel
Author(s):  
Yan Qu ◽  
Zhijun Song ◽  
Bin Teng ◽  
Yunxiang You

Internal solitary wave is considered as a potential hazard environmental condition to the floating structures in South China Sea. This paper presents results of the dynamic response analysis of a SPAR in internal solitary waves (ISW). Mathematical model of the ISW is selected to simulate the current process induced by the ISW. The result shows that the Korteweg–de Vries (KdV) gives rational result compared with the Modified Korteweg–de Vries (MKdV) equation. Dynamic motion of SPAR were estimated by using the current profile derived from KDV theory, load determined by Morrison equation and the nonlinear model of the mooring system.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Feng Xiao ◽  
Yong Chen ◽  
Yu Wang ◽  
Hongxing Hua ◽  
Dawei Zhu

This paper presents an experimental investigation into the dynamic response of three free floating stiffened metal boxes with protective coatings subjected to underwater explosion (UNDEX). One box was kept intact while the other two were, respectively, covered with monolithic coatings and chiral honeycomb coatings. Three groups of live fire tests with different attack angles and stand-off distances were conducted. The acceleration on the stiffener and strain peak on the bottom hull were selected as the major comparative criterions. Test results show that the impulse transmitted to the structure at the initial stage can be reduced, owing to the coating flexibility and fluid-structure interaction mechanism. Consequently, the acceleration peaks induced by both shock wave and bubble pulse were reduced. The shock environment can be more effectively improved by honeycomb coating when compared with monolithic coating. Most of the strain peaks decreased to a certain extent, but some of them were notably manifested, especially for honeycomb coating. The test affirms the fact that soft coating can cause stress concentration on the shell that is in direct contact with the coating due to the impedance mismatch between the interfaces of materials. A softer rubber coating induces a greater magnitude of strain.


1978 ◽  
Vol 1 (1) ◽  
pp. 17-23
Author(s):  
Maharaj K. Kaul

Author(s):  
Yuming Zhang ◽  
Haixiao Liu

A geometric model is established based on pre-existing model tests, and the rigid module flexible connector (RMFC) concept is adopted to perform hydrodynamic analysis of the modular floating structure. To obtain knowledge of the impact of tri-axial stiffness combinations, a large number of cases are designed and the dynamic performances are plotted. In order to reduce the extreme response induced by the structural resonance, damping components are designed and integrated with elastic connectors. Cases of tri-axial combinations with different damping ratios are also put into dynamic analysis. Finally, qualitative knowledge of the impact of connection properties on the dynamic response of modular floating structures is obtained and advices on the design and optimization of connecting structures are proposed.


2003 ◽  
Vol 32 (4-6) ◽  
pp. 347-361
Author(s):  
F. A. Hardjanto ◽  
J. L. Tassoulas

Author(s):  
Edward Seckel ◽  
Ian A. M. Hall ◽  
Duane T. McRuer ◽  
David H. Weir
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document