Prediction of the Wrinkling Instabilities by Long Wavelength Perturbations in thin Sheet Metal Forming

Author(s):  
P. MAZILU
2016 ◽  
Vol 734 ◽  
pp. 032069 ◽  
Author(s):  
F Adzima ◽  
PY Manach ◽  
T Balan ◽  
L Tabourot ◽  
S Toutain ◽  
...  

Author(s):  
T A Chang ◽  
A R Razali ◽  
N A I Zainudin ◽  
W L Yap

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5680-5685
Author(s):  
SEONG-CHAN HEO ◽  
TAE-WAN KU ◽  
JEONG KIM ◽  
BEOM-SOO KANG ◽  
WOO-JIN SONG

Metal forming processes such as hydroforming and sheet metal forming using tubular material and thin sheet metal have been widely used in lots of industrial fields for manufacturing of various parts that could be equipped with mechanical products. However, it is not easy to design sequential processes properly because there are various design variables that affect formability of the parts. Therefore preliminary evaluation of formability for the given process should be carried out to minimize time consumption and development cost. With the advances in finite element analysis technique over the decades, the formability evaluation using numerical simulation has been conducted in view of strain distribution and final shape. In this paper, the application of forming limit criteria is carried out for the tube hydroforming and sheet metal forming processes using theoretical background based on plastic instability conditions. Consequently, it is confirmed that the local necking and diffuse necking criteria of sheet are suitable for formability evaluation of both hydroforming and sheet metal forming processes.


2011 ◽  
Vol 110-116 ◽  
pp. 1437-1441 ◽  
Author(s):  
Farhad Haji Aboutalebi ◽  
Mehdi Nasresfahani

Prediction of sheet metal forming limits or analysis of forming failures is a very sensitive problem for design engineers of sheet forming industries. In this paper, first, damage behaviour of St14 steel (DIN 1623) is studied in order to be used in complex forming conditions with the goal of reducing the number of costly trials. Mechanical properties and Lemaitre's ductile damage parameters of the material are determined by using standard tensile and Vickers micro-hardness tests. A fully coupled elastic-plastic-damage model is developed and implemented into an explicit code. Using this model, damage propagation and crack initiation, and ductile fracture behaviour of hemispherical punch bulging process are predicted. The model can quickly predict both deformation and damage behaviour of the part because of using plane stress algorithm, which is valid for thin sheet metals. Experiments are also carried out to validate the results. Comparison of the numerical and experimental results shows good adaptation. Hence, it is concluded that finite element analysis in conjunction with continuum damage mechanics can be used as a reliable tool to predict ductile damage and forming limit in sheet metal forming processes.


Sign in / Sign up

Export Citation Format

Share Document