Numerical Prediction of Forming Limit in Hemispherical Punch Bulging by Lemaitre's Ductile Damage Model

2011 ◽  
Vol 110-116 ◽  
pp. 1437-1441 ◽  
Author(s):  
Farhad Haji Aboutalebi ◽  
Mehdi Nasresfahani

Prediction of sheet metal forming limits or analysis of forming failures is a very sensitive problem for design engineers of sheet forming industries. In this paper, first, damage behaviour of St14 steel (DIN 1623) is studied in order to be used in complex forming conditions with the goal of reducing the number of costly trials. Mechanical properties and Lemaitre's ductile damage parameters of the material are determined by using standard tensile and Vickers micro-hardness tests. A fully coupled elastic-plastic-damage model is developed and implemented into an explicit code. Using this model, damage propagation and crack initiation, and ductile fracture behaviour of hemispherical punch bulging process are predicted. The model can quickly predict both deformation and damage behaviour of the part because of using plane stress algorithm, which is valid for thin sheet metals. Experiments are also carried out to validate the results. Comparison of the numerical and experimental results shows good adaptation. Hence, it is concluded that finite element analysis in conjunction with continuum damage mechanics can be used as a reliable tool to predict ductile damage and forming limit in sheet metal forming processes.

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5680-5685
Author(s):  
SEONG-CHAN HEO ◽  
TAE-WAN KU ◽  
JEONG KIM ◽  
BEOM-SOO KANG ◽  
WOO-JIN SONG

Metal forming processes such as hydroforming and sheet metal forming using tubular material and thin sheet metal have been widely used in lots of industrial fields for manufacturing of various parts that could be equipped with mechanical products. However, it is not easy to design sequential processes properly because there are various design variables that affect formability of the parts. Therefore preliminary evaluation of formability for the given process should be carried out to minimize time consumption and development cost. With the advances in finite element analysis technique over the decades, the formability evaluation using numerical simulation has been conducted in view of strain distribution and final shape. In this paper, the application of forming limit criteria is carried out for the tube hydroforming and sheet metal forming processes using theoretical background based on plastic instability conditions. Consequently, it is confirmed that the local necking and diffuse necking criteria of sheet are suitable for formability evaluation of both hydroforming and sheet metal forming processes.


2008 ◽  
Vol 587-588 ◽  
pp. 736-740
Author(s):  
Pedro Teixeira ◽  
Abel D. Santos ◽  
J. César de Sá ◽  
Augusto Barata da Rocha

The optimisation of sheet metal processes by using numerical simulations has become a key factor to a continuously increasing requirement for time and cost efficiency, for quality improvement and materials saving, in many manufacturing areas such as automotive, aerospace, building, packaging and electronic industries. The introduction of new materials brought new challenges to sheet metal forming processes. The behaviour observed with conventional steels may not be applied when using high-strength steels or aluminium alloys. Numerical codes need to model correctly the material and different constitutive equations must be considered to describe with greater accuracy its behaviour. This enhancement of material description may provide a better prediction of the forming limits, enabling an assessment of the influence of each forming parameter on the necking occurrence and the improvement of press performance. This paper presents two numerical approaches for failure prediction in sheet metal forming operations: one is the implementation of the Lemaitre’s ductile damage model in the Abaqus/Explicit code in accordance with the theory of Continuum Damage Mechanics and the other is the traditional use of FLDs, usually employed as an analysis of the finite element solution in which the necking phenomenon is carried out in the framework of Marciniak-Kuczinsky (M-K) analysis coupled with the conventional theory of plasticity. The previous strategies and corresponding results are compared with two experimental failure cases, in order to test and validate each of these strategies.


2012 ◽  
Vol 504-506 ◽  
pp. 863-868 ◽  
Author(s):  
Miklos Tisza ◽  
Péter Zoltán Kovács ◽  
Zsolt Lukács

Development of new technologies and processes for small batch and prototype production of sheet metal components has a very important role in the recent years. The reason is the quick and efficient response to the market demands. For this reasons new manufacturing concepts have to be developed in order to enable a fast and reliable production of complex components and parts without investing in special forming machines. The need for flexible forming processes has been accelerated during the last 15 years, and by these developments the technology reaches new extensions. Incremental sheet metal forming (ISMF) may be regarded as one of the promising developments for these purposes. A comprehensive research work is in progress at the University of Miskolc (Hungary) to study the effect of important process parameters with particular emphasis on the shape and dimensional accuracy of the products and particularly on the formability limitations of the process. In this paper, some results concerning the determination of forming limit diagrams for single point incremental sheet metal forming will be described.


2013 ◽  
Vol 554-557 ◽  
pp. 919-927 ◽  
Author(s):  
Hamdaoui Mohamed ◽  
Guénhaël Le Quilliec ◽  
Piotr Breitkopf ◽  
Pierre Villon

The aim of this work is to present a POD (Proper Orthogonal Decomposition) based surrogate approach for sheet metal forming parametrized applications. The final displacement field for the stamped work-piece computed using a finite element approach is approximated using the method of snapshots for POD mode determination and kriging for POD coefficients interpolation. An error analysis, performed using a validation set, shows that the accuracy of the surrogate POD model is excellent for the representation of finite element displacement fields. A possible use of the surrogate to assess the quality of the stamped sheet is considered. The Green-Lagrange strain tensor is derived and forming limit diagrams are computed on the fly for any point of the design space. Furthermore, the minimization of a cost function based on the surrogate POD model is performed showing its potential for solving optimization problems.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 991 ◽  
Author(s):  
Abel Cherouat ◽  
Houman Borouchaki ◽  
Zhang Jie

Automatic process modeling has become an effective tool in reducing the lead-time and the cost for designing forming processes. The numerical modeling process is performed on a fully coupled damage constitutive equations and the advanced 3D adaptive remeshing procedure. Based on continuum damage mechanics, an isotropic damage model coupled with the Johnson–Cook flow law is proposed to satisfy the thermodynamic and damage requirements in metals. The Lemaitre damage potential was chosen to control the damage evolution process and the effective configuration. These fully coupled constitutive equations have been implemented into a Dynamic Explicit finite element code Abaqus using user subroutine. On the other hand, an adaptive remeshing scheme in three dimensions is established to constantly update the deformed mesh to enable tracking of the large plastic deformations. The quantitative effects of coupled ductile damage and adaptive remeshing on the sheet metal forming are studied, and qualitative comparison with some available experimental data are given. As illustrated in the presented examples this overall strategy ensures a robust and efficient remeshing scheme for finite element simulation of sheet metal‐forming processes.


Sign in / Sign up

Export Citation Format

Share Document