Sample preparation for the analysis of drugs in biological fluids

Author(s):  
Yoshihiro Saito ◽  
Koki Nakagami
1989 ◽  
Vol 7 (9) ◽  
pp. 1087-1096 ◽  
Author(s):  
R.D. McDowall ◽  
E. Doyle ◽  
G.S. Murkitt ◽  
V.S. Picot

1999 ◽  
Vol 45 (7) ◽  
pp. 1077-1081 ◽  
Author(s):  
Graham Jennings ◽  
Leslie Bluck ◽  
Antony Wright ◽  
Marinos Elia

Abstract Background: The conventional method of measuring total body water by the deuterium isotope dilution method uses gas isotope ratio mass spectrometry (IRMS), which is both expensive and time-consuming. We investigated an alternative method, using Fourier transform infrared spectrophotometry (FTIR), which uses less expensive instrumentation and requires little sample preparation. Method: Total body water measurements in human subjects were made by obtaining plasma, saliva, and urine samples before and after oral dosing with 1.5 mol of deuterium oxide. The enrichments of the body fluids were determined from the FTIR spectra in the range 1800–2800 cm−1, using a novel algorithm for estimation of instrumental response, and by IRMS for comparison. Results: The CV (n = 5) for repeat determinations of deuterium oxide in biological fluids and calibrator solutions (400–1000 μmol/mol) was found to be in the range 0.1–0.9%. The use of the novel algorithm instead of the integration routines supplied with the instrument gave at least a threefold increase in precision, and there was no significant difference between the results obtained with FTIR and those obtained with IRMS. Conclusion: This improved infrared method for measuring deuterium enrichment in plasma and saliva requires no sample preparation, is rapid, and has potential value to the clinician.


2019 ◽  
Vol 8 (4) ◽  
pp. 53-60
Author(s):  
T. N. Komarov ◽  
M. V. Belova ◽  
D. D. Stolyarova ◽  
I. E. Shohin ◽  
D. S. Bogdanova ◽  
...  

Introduction. Human Immunodeficiency Virus (HIV) is one of the main socially significant infection all over the world. HIV-positive patients take medical care, including antiretroviral drugs (ARVs) pharmacotherapy. Like all drugs, ARVs have lots of side effects that should be taken when prescribing drugs as part of highly active antiretroviral therapy. There are many cases when side effects of ARVs caused patients to enter the toxicology department. Therefore, the development of new methods for the analysis of ARV in biological fluids for the timely diagnosis of treatment of poisoning of this group of drugs is relevant today.Aim. The aim of this study is development of screening analysis of atazanavir, abacavir, nevirapine, ritonavir, lopinavir, zidovudine, darunavir and efavirenz in the urine to identify these drugs as possible toxicants for poisoning by high-performance liquid chromatography with tandem massselective detection (HPLC-MS/MS).Materials and methods. Identification of ARV was performed by HPLC-MS/MS. Methanol precipitation method was used as a sample preparation.Results and discussion. The optimal conditions for sample preparation, chromatographic separation, and mass-spectrometric detection were selected to determine the studied ARVs. This method was tested on urine samples from patients in the Department of Acute Poisoning and Somatopsychiatric Disorders (OOSPD) with acute ARV poisoning.Conclusion. This screening method for analyse atazanavir, abacavir, nevirapine, ritonavir, lopinavir, zidovudine, darunavir and efavirenz in human urine has been developed by HPLC-MS/MS. The developed method can be used to identify these drugs as possible toxicants in case of poisoning. The prospect for the development of the topic is the inclusion of new molecules in the method and quantitative determination of the studied ARVs. 


Sign in / Sign up

Export Citation Format

Share Document