The molecular components of the olfactory signal transduction cascade

Author(s):  
RANDALL R. REED ◽  
HEATHER A. BAKALYAR ◽  
PAUL G. FEINSTEIN ◽  
DAVID T. JONES
Author(s):  
Bert Ph. M. Menco

Vertebrate olfactory receptor cells are specialized neurons that have numerous long tapering cilia. The distal parts of these cilia line the interface between the external odorous environment and the luminal surface of the olfactory epithelium. The length and number of these cilia results in a large surface area that presumably increases the chance that an odor molecule will meet a receptor cell. Advanced methods of cryoprepration and immuno-gold labeling were particularly useful to preserve the delicate ultrastructural and immunocytochemical features of olfactory cilia required for localization of molecules involved in olfactory signal-transduction. We subjected olfactory tissues to freeze-substitution in acetone (unfixed tissues) or methanol (fixed tissues) followed by low temperature embedding in Lowicryl K11M for that purpose. Tissue sections were immunoreacted with several antibodies against proteins that are presumably important in olfactory signal-transduction.


2014 ◽  
Vol 32 (2) ◽  
pp. 290-295 ◽  
Author(s):  
Chunmei Zhang ◽  
Jinyuan Yan ◽  
Yao Chen ◽  
Chunyan Chen ◽  
Keqin Zhang ◽  
...  

2008 ◽  
Vol 389 (10) ◽  
Author(s):  
Stephan Pleschka

AbstractThe Raf/MEK/ERK signal transduction cascade belongs to the mitogen-activated protein kinase (MAPK) cascades. Raf/MEK/ERK signaling leads to stimulus-specific changes in gene expression, alterations in cell metabolism or induction of programmed cell death (apoptosis), and thus controls cell differentiation and proliferation. It is induced by extracellular agents, including pathogens such as RNA viruses. Many DNA viruses are known to induce cellular signaling via this pathway. As these pathogens partly use the DNA synthesis machinery for their replication, they aim to drive cells into a proliferative state. In contrast, the consequences of RNA virus-induced Raf/MEK/ERK signaling were less clear for a long time, but since the turn of the century the number of publications on this topic has rapidly increased. Research on this virus/host-interaction will broaden our understanding of its relevance in viral replication. This important control center of cellular responses is differently employed to support the replication of several important human pathogenic RNA viruses including influenza, Ebola, hepatitis C and SARS corona viruses.


1999 ◽  
Vol 277 (2) ◽  
pp. G445-G454 ◽  
Author(s):  
Adenike I. Ibitayo ◽  
Jeanette Sladick ◽  
Sony Tuteja ◽  
Otto Louis-Jacques ◽  
Hirotaka Yamada ◽  
...  

Sustained smooth muscle contraction is mediated by protein kinase C (PKC) through a signal transduction cascade leading to contraction. Heat-shock protein 27 (HSP27) appears to be the link between these two major events, i.e., signal transduction and sustained smooth muscle contraction. We have investigated the involvement of HSP27 in signal transduction and HSP27 association with contractile proteins (e.g., actin, myosin, tropomyosin, and caldesmon) resulting in sustained smooth muscle contraction. We have carried out confocal microscopy to investigate the cellular reorganization and colocalization of proteins and immunoprecipitation of HSP27 with actin, myosin, tropomyosin, and caldesmon as detected by sequential immunoblotting. Our results indicate that 1) translocation of Raf-1 to the membrane when stimulated with ceramide is inhibited by vasoactive intestinal peptide (VIP), a relaxant neuropeptide; 2) PKC-α and mitogen-activated protein kinase translocate and colocalize on the membrane in response to ceramide, and PKC-α translocation is inhibited by VIP; 3) HSP27 colocalizes with actin when contraction occurs; and 4) HSP27 immunoprecipitates with actin and with the contractile proteins myosin, tropomyosin, and caldesmon. We propose a model in which HSP27 is involved in sustained smooth muscle contraction and modulates the interaction of actin, myosin, tropomyosin, and caldesmon.


2017 ◽  
Vol 233 (4) ◽  
pp. 3164-3175 ◽  
Author(s):  
Stephanie Schaefer-Ramadan ◽  
Satanay Hubrack ◽  
Khaled Machaca

Author(s):  
H. Breer ◽  
I. Boekhoff ◽  
J. Strotmann ◽  
K. Raming ◽  
E. Tareilus

Sign in / Sign up

Export Citation Format

Share Document