Dam-Foundation Interaction Under Spatially Correlated Random Ground Motion

Author(s):  
M. Novak ◽  
E. Suen
2011 ◽  
Vol 243-249 ◽  
pp. 1512-1517
Author(s):  
Zhong Quan Zou ◽  
Li Ping Zhou ◽  
Guo Jing He

The responses of a long span concrete filled steel tubular (CFST) arch bridge subjected to spatially correlated ground motion are analyzed. By using the stochastic vibration method, the time history of ground motion on the bridge site is simulated. The influences of spatial variation of the ground motion, such as uniform excitation, wave passage effect and partial correlation effect on seismic responses are studied based on the dynamic equilibrium equation for multi-support excitations. The calculated results show that the wave propagation influences the internal forces of the arch significantly. The effect of partial coherency is more complex compared to that of the wave propagation, yet it can be neither neglected. For long-span CFST arch bridges, it is critical to consider the effects of the spatial variation of ground motion.


2020 ◽  
pp. 875529302095244
Author(s):  
Wenqi Du ◽  
Chao-Lie Ning

Ground motion intensity measures (IMs) were observed to be spatially correlated during past earthquakes. In this article, a new spatial cross-correlation model for a vector-IM, which consists of spectral acceleration (SA) ordinates at 17 periods and six non-SA IMs (e.g. peak ground velocity, Arias intensity, cumulative absolute velocity, and significant durations), is proposed using principal component analysis (PCA) and geostatistical analysis. A total of 3797 ground motion records are selected from the NGA-West2 database for such analyses. PCA is used to transform the spatially correlated within-event residuals into uncorrelated principal components; a permissible function is then proposed to fit the empirical semivariograms calculated by the principal components. It is evident that the proposed model performs well in capturing the spatial variability characteristics of the multiple ground motion IMs. A simple example is presented to illustrate the use of the proposed model in realizing spatially correlated ground motion residuals of multiple IMs. The model developed enables one to simulate spatially cross-correlated IMs over a large area in a rapid way.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Gurinderbir S. Sooch ◽  
Ashutosh Bagchi

The concrete gravity dams are designed to perform satisfactorily during an earthquake since the consequence of failure is catastrophic to the downstream communities. The foundation in a dam is usually modeled by a substructuring approach for the purpose of seismic response analysis. However, the substructuring cannot be used for solving nonlinear dynamic problems that may be encountered in dam-reservoir-foundation systems. For that reason, the time domain approach is preferred for such systems. The deconvolved earthquake input model is preferred as it can remove the seismic scattering effects due to artificial boundaries of the semi-infinite foundation domain. Deconvolution is a mathematical process that allows the adjustment of the amplitude and frequency contents of a seismic ground motion applied at the base of the foundation in order to get the desired output at the dam-foundation interface. It is observed that the existing procedures of deconvolution are not effective for all types of earthquake records. A modified procedure has been proposed here for efficient deconvolution of all types of earthquake records including high-frequency and low-frequency ground motions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liaojun Zhang ◽  
Yafei Zhai ◽  
Binghui Cui ◽  
Yujie Tang ◽  
Zhonghui Bi

The traditional linear elastic and Drucker–Prager (DP) models cannot truly reflect the strong nonlinear characteristics of the concrete and rock foundation of the dam under earthquake. Therefore, for comprehensive evaluation of the cumulative damage of the gravity dam structure caused by aftershock, the dynamic damage of the dam body concrete is analyzed by many scholars through the plastic damage mechanics method, but there is little research on rock material at the dam foundation with the method utilized; thus, the simulation of the whole dynamic damage evolution is worthy of investigation of the dam body and dam foundation. According to the randomness of ground motion, the transcendental probability (P) is introduced to express the statistical characteristics of aftershock intensity, and a new method for constructing main-aftershock sequences of ground motion is proposed in this paper. And then, the law of the damage evolution and energy characteristics of the concrete gravity dam under the combined action of the main shock and aftershock sequences is studied. The results are shown as follows: the smaller aftershocks do not cause further damage to the dam; as the aftershock intensity increases, the energy characteristics of the dam body and foundation have shown different changing rules; when the ratio of peak aftershock acceleration to peak main shock acceleration (∇PGA) approximately equals 0.68, the aftershock will cause larger secondary damage to the dam.


1993 ◽  
Vol 119 (11) ◽  
pp. 2333-2352 ◽  
Author(s):  
Erik H. Vanmarcke ◽  
Ernesto Heredia‐Zavoni ◽  
Gordon A. Fenton

2019 ◽  
Vol 109 (4) ◽  
pp. 1419-1434 ◽  
Author(s):  
Sara Sgobba ◽  
Giovanni Lanzano ◽  
Francesca Pacor ◽  
Rodolfo Puglia ◽  
Maria D'Amico ◽  
...  

Abstract In this study, we propose an approach to generate spatially correlated seismic ground‐motion fields for loss assessment and risk analysis. Differently from the majority of spatial correlation models, usually calibrated on within‐earthquake residuals, we use the sum of the source‐, site‐, and path‐systematic effects (namely corrective terms) of the ground‐motion model (GMM), obtained relaxing the ergodic assumption. In this way, we build a scenario‐related spatial correlation model of the corrective terms by which adjusting the median predictions of ground motion and the associated variability. We show a case study focused on the Po Plain area in northern Italy, presenting a series of peculiar features (i.e., availability of a dense dataset of seismic records with uniform soil classification and very large plain with variable thickness of the sedimentary cover) that make its study particularly suitable for the purpose of developing and validating the proposed approach. The study exploits the repeatable corrective terms, estimated by Lanzano et al. (2017) in northern Italy, using a local GMM (Lanzano et al., 2016), which predicts the geometric mean of horizontal response spectral accelerations in the 0.01–4 s period range. Our results show that the implementation of a spatially correlated model of the systematic terms provides reliable shaking fields at various periods and spatial patterns compliant with the deepest geomorphology of the area, which is an aspect not accounted by the GMM model. The possibility to define a priori fields of systematic effects depending on local characteristics could be usefully adopted either to simulate future ground‐motion scenarios or to reconstruct past events.


Sign in / Sign up

Export Citation Format

Share Document