Stochastic simulation of spatially correlated earthquake time histories, and energy-compatible and spectrum-compatible ground motion modification using wavelet packets

2016 ◽  
Author(s):  
Duruo Huang
2021 ◽  
Author(s):  
Habib Rahimi ◽  
G. Tanircan ◽  
Mohammad Shahvar

Abstract In this study, a stochastic simulation model proposed by Yamamoto and Baker (2013), is applied to Iranian strong motion database which comprises more than 3828 recordings for a time period between 1975–2018. Each ground motion is decomposed into wavelet packets. Amplitudes of wavelet packets are divided into two groups and for each group model parameters are estimated using the maximum likelihood method. Regression coefficients are then obtained relating model parameters to seismic characteristics such as earthquake magnitude, distance, and site condition. Inter-event residuals of coefficients and correlation of total residuals of those parameters are also calculated. To reconstruct the amplitudes in time domain and do the simulation, inverse wavelet packet transform is used. Finally, a validation test is performed. The comparison of ground motion intensity measures for recorded and simulated time series shows an acceptable conformity in the application. The estimated parameters using the simulated data are in good agreement with the real data, indicating the acceptable validity of the estimated stochastic simulation model. Obtained regression equations can be used to generate ground motions for the future earthquake scenarios in Iran.


1982 ◽  
Vol 72 (5) ◽  
pp. 1717-1738 ◽  
Author(s):  
Michel Bouchon ◽  
Keiiti Aki

abstract In the absence of near-field records of differential ground motion induced by earthquakes, we simulate the time histories of strain, tilt, and rotation in the vicinity of earthquake faults embedded in layered media. We consider the case of both strike-slip and dip-slip fault models and study the effect of different crustal structures. The maximum rotational motion produced by a buried 30-km-long strike-slip fault with slip of 1 m is of the order of 3 × 10−4 rad while the corresponding rotational velocity is about 1.5 × 10−3 rad/sec. A simulation of the San Fernando earthquake yields maximum longitudinal strain and tilt a few kilometers from the fault of the order of 8 × 10−4 and 7 × 10−4 rad. These values being small compared to the amplitude of ground displacement, the results suggest that most of the damage occurring in earthquakes is caused by translation motions. We also show that strain and tilt are closely related to ground velocity and that the phase velocities associated with strong ground motions are controlled by the rupture velocity and the basement rock shearwave velocity.


Author(s):  
Yasin M. Fahjan ◽  
F. İlknur Kara ◽  
Aydın Mert

Recent developments in performance-based analyses and the high performance of computational facilities have led to an increased trend for utilizing nonlinear time-history analysis in seismic evaluation of the performance of structures. One of the crucial issues of such analysis is the selection of appropriate acceleration time histories set that satisfy design code requirements at a specific site. In literature, there are three sources of acceleration time histories: 1) recorded accelerograms in real earthquakes scaled to match design code spectrum/uniform hazard spectra/conditional mean spectrum, 2) artificial records generated from white noise spectra to satisfy design code spectrum, and 3) synthetic records obtained from seismological models. Due to the increase of available strong ground motion database, using and scaling real recorded accelerograms is becoming one of the most contemporary research issues in this field. In this study, basic methodologies and criteria for selecting strong ground motion time histories are discussed. Design code requirements for scaling are summarized for ASCE/SEI-7-10, EC8 and Turkish Seismic Codes. Examples for scaling earthquake records to uniform hazard spectra are provided.


2015 ◽  
Vol 744-746 ◽  
pp. 878-883
Author(s):  
Ju Fang Zhong ◽  
Jun Wei Liang ◽  
Zhi Peng Fan ◽  
Luo Long Zhan

Owing to the simulated ground motion energy distribution by stochastic finite-fault method is not reasonable, near-field bedrock strong ground motion acceleration time histories are used to study. Fourier transform is adapted to analysis the variation of the energy accumulation curve with frequency. The results show that the record energy accumulation curve is a steep rise curve, 80% of total energy of the vertical ground motion is concentrated on the 2.5-15Hz, while the horizontal is mainly concentrated on the 2-11Hz. An improved stochastic finite-fault method is proposed by multiplying an amplification factor in some frequency. The results show that multiplying an amplification factor, the simulated acceleration energy accumulation curve matches to the record acceleration energy accumulation curve, and the peak of simulated acceleration response spectrum tends to the record acceleration value.


2017 ◽  
Author(s):  
Duruo Huang ◽  
Wenqi Du

Abstract. In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of strong-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database, or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard, and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are yet available. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.


Sign in / Sign up

Export Citation Format

Share Document