DIRECT CONVERSION OF RADIANT INTO ELECTRICAL ENERGY USING PLANT SYSTEMS

Author(s):  
M.J. Allen
2019 ◽  
Vol 55 (6) ◽  
pp. 678-685
Author(s):  
V. Yu. Barinov ◽  
D. Yu. Kovalev ◽  
S. G. Vadchenko ◽  
O. A. Golosova ◽  
V. V. Prosyanyuk ◽  
...  

2012 ◽  
Vol 65 (6) ◽  
pp. 652 ◽  
Author(s):  
David L. Ollis ◽  
Jian-Wei Liu ◽  
Bradley J. Stevenson

Harvesting the energy of sunlight can be achieved with a variety of processes and as one becomes obsolete, others will need to be developed to replace it. The direct conversion of sunlight into electrical energy could be used to provide power. Energy could also be obtained by combusting hydrogen produced by splitting of water with sunlight. None of these direct approaches will entirely satisfy the entire energy needs of a modern economy and the conversion of biological materials into liquid fuels for transport and other applications may prove to be important for tomorrow’s energy needs. In fact, biofuels such as bioethanol and biodiesel are already used in many countries. However, the long-term viability of these fuels depends on the efficiency of the processes used to produce them. We outline here a method by which ethanol can be produced using enzymes that can be optimized for this purpose.


2009 ◽  
Vol 1166 ◽  
Author(s):  
Donald T Morelli ◽  
Eric J. Skoug

AbstractThermoelectric materials can provide sources of clean energy and increase the efficiency of existing processes. Solar energy, waste heat recovery, and climate control are examples of applications that could benefit from the direct conversion between thermal and electrical energy provided by a thermoelectric device. The widespread use of thermoelectric devices has been prevented by their lack of efficiency, and thus the search for high-efficiency thermoelectric materials is ongoing. Here we describe our initial efforts studying copper-containing ternary compounds for use as high-efficiency thermoelectric materials that could provide low-cost alternatives to their silver-containing counterparts. The compounds of interest are semiconductors that crystallize in structures that are variants of binary zincblende structure compounds. Two examples are the compounds Cu2SnSe3 and Cu3SbSe4, for which we present here preliminary thermoelectric characterization data.


Author(s):  
Cory Budischak ◽  
Keith W. Goossen

Solar energy will be an important source of energy for a sustainable energy system whether or not it is directly collected (solar thermal, photovoltaics) or indirectly collected (wind, wave, etc). This project focused on increasing the efficiency of the direct conversion of solar energy into electricity, which is also known as photovoltaics (PV). It has long been known that photovoltaic cells perform less efficiently at higher temperatures. In fact, solar modules under concentration are frequently cooled either actively or passively. The current study, however, focused on cooling modules under no concentration. The goal of the current project was to answer the question: Can the energy gained by cooling a photovoltaic module with groundwater be greater than the energy used by the cooling system and is there an economic benefit? A digital simulation of a simple photovoltaic module under groundwater cooling was performed in order to answer the research question. The simulation was performed for Phoenix, AZ and assuming certain control parameters it was found that the overall system produced over 9% more electricity than a system without groundwater cooling. While the groundwater cooled system increased overall electrical production, the economics of the system will also be presented. Recently, an Arizona utility APS introduced time of use pricing for electricity. Because groundwater cooling provides the most benefit during very hot days with high electrical demand, cooling is more economically attractive. A simple economic analysis will be presented including estimated costs of the cooling system and added value of the excess electrical energy produced under different APS rate plans.


Author(s):  
Mehimmedetsi Boudjemaa ◽  
Chenni Rachid

The Permanent magnet synchronous motor (PMSM) is suitable for so much application, such as traction, aeronautics and generally in industrial automated processes. In our work, we will study the application of PMSM in renewable energies especially solar pumping. Our objective is to model the complete system, including the photovoltaic inverter, PMSM and the centrifugal pump under Matlab/Simulink environment. Solar panels generate electrical energy as direct current by direct conversion of solar radiation using semiconductor materials made of monocrystalline, polycrystalline or amorphous silicon. The energy received depends on radiation and on ambient temperature. The permanent magnet synchronous motor (PMSM) is not stable in open loop. To control the PMSM in terms of speed, torque or position, we need to implement vector control.<br />We will establish the field oriented control of a PMSM supplied by photovoltaic source with a focus on their applications in variable speed domain.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Pierre Magnier ◽  
Vincent Boucinha ◽  
BinJie Dong ◽  
Régine Weber ◽  
Annie Leroy-Chesneau ◽  
...  

Since the mid-1990s, electrohydrodynamic actuators have been developed for modifying on subsonic airflows. The principle of plasma action is the use of the direct conversion of electrical energy into kinetic energy in order to act on the flow boundary layer. This paper presents our contribution to such an investigation concerning an electrohydrodynamic actuator consisting of several sinusoidal dielectric barrier discharges. First, the ionic wind induced by this actuator was measured with a pressure sensing probe. The induced flow velocity increased with the applied voltage and frequency. The particle image velocimetry system without external airflow showed the presence of induced swirls, generated by the ion movement in plasma. Then the action of this actuator on a flat plate boundary layer in parallel flow at zero incidence was studied in a subsonic wind tunnel. Experiments were performed for 15 m/s and 22 m/s. They showed that electric discharges (±8 kV, 1 kHz) acting on a laminar flow tripped the laminar-to-turbulent transition. Moreover, higher applied voltages (up to ±12 kV, 1 kHz) were necessary for modifying turbulent boundary layers.


2007 ◽  
Vol 539-543 ◽  
pp. 1315-1320 ◽  
Author(s):  
Norbert H. Menzler ◽  
Hans Peter Buchkremer ◽  
Johannes Ernst ◽  
Ralf Kauert ◽  
Jürgen Ruska ◽  
...  

Due to their direct conversion of electrochemical into electrical energy solid oxide fuel cells (SOFCs) have great potential for a future additional energy supply. Even in the last two years numerous developers of SOFCs, both industry and research institutions, have demonstrated long-term stable operation of stacks of various dimensions (ranging from 1 to 125 kWel, with durations of up to 25000 hours of operation). Besides technical proof, single component availability (cells, bipolar plates, sealing…), stable and low-aging operation, as well as cost efficient manufacturing of the components is becoming more and more evident in preparation for a market launch. Close cooperation between SOFC stack developers, SOFC users and manufacturers of powders, semifinished parts or stack components is a prerequisite for success. Within a collaboration project funded by the German Federal Ministry of Economics and Labor (BMWA) the development of an SOFC as an auxiliary power unit (APU) is being promoted. The industrial users are BMW for automotive applications and Liebherr for use in construction vehicles or aircraft. The content of this presentation will be the transfer of the manufacturing knowledge developed at Research Center Jülich to CeramTec; including on the one hand the problems and limitations and, on the other hand the successes and positive perceptions. In detail, the transfer of, for example tape casting and screen printing will be addressed, powder characteristics concerning paste or slip formulation and special tests with reference to SOFCs are presented, and single cell tests of various cells manufactured with different powders or fabrication processes are described. Additionally, some remarks will concern different priorities in either R&D or industry (e.g. R&D: high power density; industry: reproducibility), process windows for manufacturing and the search for alternative fabrication methods.


Sign in / Sign up

Export Citation Format

Share Document