Ternary Copper-Based Diamond-Like Semiconductors for Thermoelectric Applications

2009 ◽  
Vol 1166 ◽  
Author(s):  
Donald T Morelli ◽  
Eric J. Skoug

AbstractThermoelectric materials can provide sources of clean energy and increase the efficiency of existing processes. Solar energy, waste heat recovery, and climate control are examples of applications that could benefit from the direct conversion between thermal and electrical energy provided by a thermoelectric device. The widespread use of thermoelectric devices has been prevented by their lack of efficiency, and thus the search for high-efficiency thermoelectric materials is ongoing. Here we describe our initial efforts studying copper-containing ternary compounds for use as high-efficiency thermoelectric materials that could provide low-cost alternatives to their silver-containing counterparts. The compounds of interest are semiconductors that crystallize in structures that are variants of binary zincblende structure compounds. Two examples are the compounds Cu2SnSe3 and Cu3SbSe4, for which we present here preliminary thermoelectric characterization data.

DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 265-272
Author(s):  
Anderson Luis Oliveira Marana ◽  
Camilo Andrés Guerrero Martin ◽  
Erik Montes-Páez ◽  
Oswaldo Hideo Ando Junior

The thermoelectric effect allows the direct conversion of thermal energy into electrical energy without the need for moving parts and its applications are endless, with only the availability of a temperature gradient. Combustion vehicles generate energy losses of up to 62% and it is estimated that efficiency with thermoelectric generators can be increased by up to 8%. In this work we propose a system of waste heat from exhaust gases from the thermoelectric effect. A computational model was developed using the finite element method. Based on the simulations, a set of curves of electrical variables can be made as a function of temperature. There is a good correlation between the model and datasheet data. Based on the modeled system, it was possible to evaluate a generation system with the generation of up to 120W with 5.8% efficiency, representing an increase of up to 3% in overall efficiency.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Harold Schock ◽  
Giles Brereton ◽  
Eldon Case ◽  
Jonathan D'Angelo ◽  
Tim Hogan ◽  
...  

With the rising cost of fuel and increasing demand for clean energy, solid-state thermoelectric (TE) devices are an attractive option for reducing fuel consumption and CO2 emissions. Although they are reliable energy converters, there are several barriers that have limited their implementation into wide market acceptance for automotive applications. These barriers include: the unsuitability of conventional thermoelectric materials for the automotive waste heat recovery temperature range; the rarity and toxicity of some otherwise suitable materials; and the limited ability to mass-manufacture thermoelectric devices from certain materials. One class of material that has demonstrated significant promise in the waste heat recovery temperature range is skutterudites. These materials have little toxicity, are relatively abundant, and have been investigated by NASA-JPL for the past twenty years as possible thermoelectric materials for space applications. In a recent collaboration between Michigan State University (MSU) and NASA-JPL, the first skutterudite-based 100 W thermoelectric generator (TEG) was constructed. In this paper, we will describe the efforts that have been directed towards: (a) enhancing the technology-readiness level of skutterudites to facilitate mass manufacturing similar to that of Bi2Te3, (b) optimizing skutterudites to improve thermal-to-electric conversion efficiencies for class 8 truck applications, and (c) describing how temperature cycling, oxidation, sublimation, and other barriers to wide market acceptance must be managed. To obtain the maximum performance from these devices, effective heat transfer systems need to be developed for integration of thermoelectric modules into practical generators.


Author(s):  
Gautam Sharma ◽  
Vineet Kumar Pandey ◽  
Shouvik Datta ◽  
Prasenjit Ghosh

Thermoelectric materials are used for conversion of waste heat to electrical energy. The transport coefficients that determine their thermoelectric properties depend on the band structure and the relaxation time of...


2019 ◽  
Vol 198 ◽  
pp. 111842
Author(s):  
Xin Zhang ◽  
Jianying Du ◽  
Yee Sin Ang ◽  
Jincan Chen ◽  
Lay Kee Ang

Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


2020 ◽  
Vol 13 (2) ◽  
pp. 579-591 ◽  
Author(s):  
Binbin Jiang ◽  
Xixi Liu ◽  
Qi Wang ◽  
Juan Cui ◽  
Baohai Jia ◽  
...  

A high conversion efficiency of 11.2% was realized in a low-cost PbS-based segmented thermoelectric module.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Xiaoqiang Xu ◽  
Yongjia Wu ◽  
Lei Zuo ◽  
Shikui Chen

Abstract A large amount of energy from power plants, vehicles, oil refining, and steel or glass making process is released to the atmosphere as waste heat. The thermoelectric generator (TEG) provides a way to reutilize this portion of energy by converting temperature differences into electricity using Seebeck phenomenon. Because the figures of merit zT of the thermoelectric materials are temperature-dependent, it is not feasible to achieve high efficiency of the thermoelectric conversion using only one single thermoelectric material in a wide temperature range. To address this challenge, the authors propose a method based on topology optimization to optimize the layouts of functional graded TEGs consisting of multiple materials. The multimaterial TEG is optimized using the solid isotropic material with penalization (SIMP) method. Instead of dummy materials, both the P-type and N-type electric conductors are optimally distributed with two different practical thermoelectric materials. Specifically, Bi2Te3 and Zn4Sb3 are selected for the P-type element while Bi2Te3 and CoSb3 are employed for the N-type element. Two optimization scenarios with relatively regular domains are first considered with one optimizing on both the P-type and N-type elements simultaneously, and the other one only on single P-type element. The maximum conversion efficiency could reach 9.61% and 12.34% respectively in the temperature range from 25 °C to 400 °C. CAD models are reconstructed based on the optimization results for numerical verification. A good agreement between the performance of the CAD model and optimization result is achieved, which demonstrates the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document