scholarly journals Engineering Enzymes for Energy Production

2012 ◽  
Vol 65 (6) ◽  
pp. 652 ◽  
Author(s):  
David L. Ollis ◽  
Jian-Wei Liu ◽  
Bradley J. Stevenson

Harvesting the energy of sunlight can be achieved with a variety of processes and as one becomes obsolete, others will need to be developed to replace it. The direct conversion of sunlight into electrical energy could be used to provide power. Energy could also be obtained by combusting hydrogen produced by splitting of water with sunlight. None of these direct approaches will entirely satisfy the entire energy needs of a modern economy and the conversion of biological materials into liquid fuels for transport and other applications may prove to be important for tomorrow’s energy needs. In fact, biofuels such as bioethanol and biodiesel are already used in many countries. However, the long-term viability of these fuels depends on the efficiency of the processes used to produce them. We outline here a method by which ethanol can be produced using enzymes that can be optimized for this purpose.

1979 ◽  
Vol 9 (1) ◽  
pp. 68-75 ◽  
Author(s):  
J. C. Nautiyal

Although forests supply a major part of the energy needs of the less developed countries in the world, the industrialized nations cannot look forward to very significant contributions from existing forests in this matter. Even if the economic problems of cost are ignored there is not enough wood left, even in a forest-rich country like Canada, to provide more than about 5% of the energy needs of the country after the requirements of the forest products industries have been met. Forests can, however, supplement other energy sources in certain situations. Energy farming seems to be the only way in which forestry can make a significant long-term contribution to energy supply, particularly if research in development of wood-fired generating plants and management of stands for energy production is pursued.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6921
Author(s):  
Sebastian Pater

A hybrid photovoltaic-thermal collector (PV-T) with the capability to produce thermal energy and electrical energy simultaneously has attracted the attention of researchers, especially in terms of improving PV-T performance. This study analyses the work of four model installations with PV-T and other devices built in the transient systems simulation program. The novelty of this article lies in a long-term approach to the operation of PV-T panels under selected climatic conditions. Influence of the installation’s configuration on the obtained temperatures of solar cells, and, in consequence, on electric power generated by PV-T and the amount of heat produced during one year in a selected location is presented. Among others, the impact of the temperature coefficient of photovoltaic cells for long-term PV-T operation was analyzed in the paper. The results showed that the type of cell used may decrease the yearly electric energy production from PV-T even by 7%. On the other hand, intensification of the process of heat reception from PV-T using a heat pump increased this production by 6% in relation to the base model. The obtained research results indicate possible methods for improving the effectiveness of PV-T operation in a long-term aspect.


2021 ◽  
Vol 4 (01) ◽  
pp. 1-6
Author(s):  
Muhammad Agus Sahbana ◽  
Akhmad Farid

The renewable energy has a very important role in meeting energy needs. This is because the use of fuel for conventional power plants in the long term will deplete the dwindling resources of oil, gas and coal and can also cause environmental pollution. Solar panels based on 2N3055 transistors and Thermoelectric Cooler (TEC) are the basic materials for designing alternative power plants. In the manufacturing process, this solar panel utilizes electronic components that are capable of generating electrical energy (emf), so that it can be used as an appropriate technology to produce a solar panel that utilizes solar energy in the form of heat and solar radiation. The use of transistors 2N3055 and TEC proved to be more efficient in generating electrical energy, there was no significant decrease in voltage and current even though the weather was suddenly cloudy. The average voltage and current generated in this solar panel are 24.58 VDC and 2.72 Ampere DC.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1766 ◽  
Author(s):  
Alessandro Suardi ◽  
Sergio Saia ◽  
Walter Stefanoni ◽  
Carina Gunnarsson ◽  
Martin Sundberg ◽  
...  

The collection of residues from staple crop may contribute to meet EU regulations in renewable energy production without harming soil quality. At a global scale, chaff may have great potential to be used as a bioenergy source. However, chaff is not usually collected, and its loss can consist of up to one-fifth of the residual biomass harvestable. In the present work, a spreader able to manage the chaff (either spreading [SPR] on the soil aside to the straw swath or admixed [ADM] with the straw) at varying threshing conditions (with either 1 or 2 threshing rotors [1R and 2R, respectively] in the combine, which affects the mean length of the straw pieces). The fractions of the biomass available in field (grain, chaff, straw, and stubble) were measured, along with the performances of both grain harvesting and baling operations. Admixing chaff allowed for a slightly higher amount of straw fresh weight baled compared to SPR (+336 kg straw ha−1), but such result was not evident on a dry weight basis. At the one time, admixing chaff reduced the material capacity of the combine by 12.9%. Using 2R compared to 1R strongly reduced the length of the straw pieces, and increased the bale unit weight; however, it reduced the field efficiency of the grain harvesting operations by 11.9%. On average, the straw loss did not vary by the treatments applied and was 44% of the total residues available (computed excluding the stubble). In conclusion, admixing of chaff with straw is an option to increase the residues collected without compromising grain harvesting and straw baling efficiencies; in addition, it can reduce the energy needs for the bale logistics. According to the present data, improving the chaff collection can allow halving the loss of residues. However, further studies are needed to optimise both the chaff and the straw recoveries.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1011
Author(s):  
Bartłomiej Bajan ◽  
Joanna Łukasiewicz ◽  
Agnieszka Poczta-Wajda ◽  
Walenty Poczta

The projected increase in the world’s population requires an increase in the production of edible energy that would meet the associated increased demand for food. However, food production is strongly dependent on the use of energy, mainly from fossil fuels, the extraction of which requires increasing input due to the depletion of the most easily accessible deposits. According to numerous estimations, the world’s energy production will be dependent on fossil fuels at least to 2050. Therefore, it is vital to increase the energy efficiency of production, including food production. One method to measure energy efficiency is the energy return on investment (EROI), which is the ratio of the amount of energy produced to the amount of energy consumed in the production process. The literature lacks comparable EROI calculations concerning global food production and the existing studies only include crop production. The aim of this study was to calculate the EROI of edible crop and animal production in the long term worldwide and to indicate the relationships resulting from its changes. The research takes into account edible crop and animal production in agriculture and the direct consumption of fossil fuels and electricity. The analysis showed that although the most underdeveloped regions have the highest EROI, the production of edible energy there is usually insufficient to meet the food needs of the population. On the other hand, the lowest EROI was observed in highly developed regions, where production ensures food self-sufficiency. However, the changes that have taken place in Europe since the 1990s indicate an opportunity to simultaneously reduce the direct use of energy in agriculture and increase the production of edible energy, thus improving the EROI.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 920
Author(s):  
Yue Hong ◽  
Irina Temiz ◽  
Jianfei Pan ◽  
Mikael Eriksson ◽  
Cecilia Boström

Wave energy converters (WECs), which are designed to harvest ocean wave energy, have recently been improved by the installation of numerous conversion mechanisms; however, it is still difficult to find an appropriate method that can compromise between strong environmental impact and robust performance by transforming irregular wave energy into stable electrical power. To solve this problem, an investigation into the impact of varied wave conditions on the dynamics of WECs and to determine an optimal factor for WECs to comply with long-term impacts was performed. In this work, we researched the performance of WECs influenced by wave climates. We used a permanent magnet linear generator (PMLG)-based WEC that was invented at Uppsala University. The damping effect was first studied with a PMLG-type WEC. Then, a group of sea states was selected to investigate their impact on the power production of the WEC. Two research sites were chosen to investigate the WEC’s annual energy production as well as a study on the optimal damping coefficient impact. In addition, we compared the WEC’s energy production between optimal damping and constant damping under a full range of sea states at both sites. Our results show that there is an optimal damping coefficient that can achieve the WEC’s maximum power output. For the chosen research sites, only a few optimal damping coefficients were able to contribute over 90% of the WEC’s annual energy production. In light of the comparison between optimal and constant damping, we conclude that, for specific regions, constant damping might be a better choice for WECs to optimize long-term energy production.


Sign in / Sign up

Export Citation Format

Share Document