Greenhouse gas emissions reductions in Ukraine through energy efficiency policies and technologies implementation

Author(s):  
M RAPTSUN
Author(s):  
Raluca Andreea Felseghi ◽  
Teodora Melania Şoimoşan ◽  
Constatin Filote ◽  
Maria Simona Răboaca

Currently, buildings are considered to be a continuously evolving organism that over time has to be treated, rehabilitated, and upgraded to meet the requirements set by the user at a certain stage. Buildings are a central element of the EU member states' energy efficiency policies, accounting for about 40% of final energy consumption, and 36% of greenhouse gas emissions, and about 75% of buildings are not energy efficient. Recent applications and studies establish that green retrofitting has maintained older existing buildings to increase energy efficiency, optimize building performance, increase occupants' satisfaction, and boost economic return while decreasing greenhouse gas emissions. In this regard, this chapter aims to address the main factors that negatively affect the performance of residential buildings and presents the common green retrofitting measures that can be taken to ensure the state of human well-being in residential buildings.


Author(s):  
Raluca Andreea Felseghi ◽  
Teodora Melania Şoimoşan ◽  
Constatin Filote ◽  
Maria Simona Răboaca

Currently, buildings are considered to be a continuously evolving organism that over time has to be treated, rehabilitated, and upgraded to meet the requirements set by the user at a certain stage. Buildings are a central element of the EU member states' energy efficiency policies, accounting for about 40% of final energy consumption, and 36% of greenhouse gas emissions, and about 75% of buildings are not energy efficient. Recent applications and studies establish that green retrofitting has maintained older existing buildings to increase energy efficiency, optimize building performance, increase occupants' satisfaction, and boost economic return while decreasing greenhouse gas emissions. In this regard, this chapter aims to address the main factors that negatively affect the performance of residential buildings and presents the common green retrofitting measures that can be taken to ensure the state of human well-being in residential buildings.


2021 ◽  
Vol 93 ◽  
pp. 102763
Author(s):  
Luciana M.B. Ventura ◽  
Yu (Jade) Jiang ◽  
Kanok Boriboonsomsin ◽  
George Scora ◽  
Kent Johnson ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7112
Author(s):  
Valeria Todeschi ◽  
Guglielmina Mutani ◽  
Lucia Baima ◽  
Marianna Nigra ◽  
Matteo Robiglio

Urban rooftops are a potential source of water, energy, and food that contribute to make cities more resilient and sustainable. The use of smart technologies such as solar panels or cool roofs helps to reach energy and climate targets. This work presents a flexible methodology based on the use of geographical information systems that allow evaluating the potential use of roofs in a densely built-up context, estimating the roof areas that can be renovated or used to produce renewable energy. The methodology was applied to the case study of the city of Turin in Italy, a 3D roof model was designed, some scenarios were investigated, and priorities of interventions were established, taking into account the conditions of the urban landscape. The applicability of smart solutions was conducted as a support to the review of the Building Annex Energy Code of Turin, within the project ‘Re-Coding’, which aimed to update the current building code of the city. In addition, environmental, economic, and social impacts were assessed to identify the more effective energy efficiency measures. In the Turin context, using an insulated green roof, there was energy saving in consumption for heating up to 88 kWh/m2/year and for cooling of 10 kWh/m2/year, with a reduction in greenhouse gas emissions of 193 tCO2eq/MWh/year and 14 tCO2eq/MWh/year, respectively. This approach could be a significant support in the identification and promotion of energy efficiency solutions to exploit also renewable energy resources with low greenhouse gas emissions.


Energy ◽  
2016 ◽  
Vol 103 ◽  
pp. 672-678 ◽  
Author(s):  
Ashkan Nabavi-Pelesaraei ◽  
Homa Hosseinzadeh-Bandbafha ◽  
Peyman Qasemi-Kordkheili ◽  
Hamed Kouchaki-Penchah ◽  
Farshid Riahi-Dorcheh

Sign in / Sign up

Export Citation Format

Share Document