Energy efficiency and greenhouse gas emissions of current steam injection process and promising steam based techniques for heavy oil reservoirs

2018 ◽  
Vol 166 ◽  
pp. 842-849 ◽  
Author(s):  
Yanyong Wang ◽  
Shaoran Ren ◽  
Liang Zhang ◽  
Changhao Hu
Author(s):  
Ionescu (Goidescu) Nicoleta Mihaela ◽  
Vasiliu Viorel Eugen ◽  
Onutu Ion

Enhanced oil recovery (E.O.R) is oil recovery by the injection of materials not normally present in the reservoir. Thermal methods such as steam injection process are the best heavy oil recovery methods. Improvement of mobility ratio in the reservoir and economic recovery from heavy oil reservoirs depend mainly on reduction of heavy oil viscosity. For a steam injection process should consider the heat and mass transfer. Heavy oil reservoirs contain a considerable amount of hydrocarbon resources of the world. Meanwhile further demand for oil resources in the world , reduction of natural production from oil reservoirs, and finally price of oil in recent years have attracted notices to production methods from heavy and extra heavy oil reservoirs. High viscosity and great amounts of asphaltene in these hydrocarbons make difficulties in extraction, transportation, and process of heavy oil. In Romania there have been numerous theoretical and laboratory researches, as well as site experiments on the application of secondary recovery methods,Romanian specialists having a wide experience in this field


2020 ◽  
Vol 10 (20) ◽  
pp. 7112
Author(s):  
Valeria Todeschi ◽  
Guglielmina Mutani ◽  
Lucia Baima ◽  
Marianna Nigra ◽  
Matteo Robiglio

Urban rooftops are a potential source of water, energy, and food that contribute to make cities more resilient and sustainable. The use of smart technologies such as solar panels or cool roofs helps to reach energy and climate targets. This work presents a flexible methodology based on the use of geographical information systems that allow evaluating the potential use of roofs in a densely built-up context, estimating the roof areas that can be renovated or used to produce renewable energy. The methodology was applied to the case study of the city of Turin in Italy, a 3D roof model was designed, some scenarios were investigated, and priorities of interventions were established, taking into account the conditions of the urban landscape. The applicability of smart solutions was conducted as a support to the review of the Building Annex Energy Code of Turin, within the project ‘Re-Coding’, which aimed to update the current building code of the city. In addition, environmental, economic, and social impacts were assessed to identify the more effective energy efficiency measures. In the Turin context, using an insulated green roof, there was energy saving in consumption for heating up to 88 kWh/m2/year and for cooling of 10 kWh/m2/year, with a reduction in greenhouse gas emissions of 193 tCO2eq/MWh/year and 14 tCO2eq/MWh/year, respectively. This approach could be a significant support in the identification and promotion of energy efficiency solutions to exploit also renewable energy resources with low greenhouse gas emissions.


Energy ◽  
2016 ◽  
Vol 103 ◽  
pp. 672-678 ◽  
Author(s):  
Ashkan Nabavi-Pelesaraei ◽  
Homa Hosseinzadeh-Bandbafha ◽  
Peyman Qasemi-Kordkheili ◽  
Hamed Kouchaki-Penchah ◽  
Farshid Riahi-Dorcheh

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Changjiu Wang ◽  
Huiqing Liu ◽  
Qiang Zheng ◽  
Yongge Liu ◽  
Xiaohu Dong ◽  
...  

Controlling the phenomenon of steam channeling is a major challenge in enhancing oil recovery of heavy oil reservoirs developed by steam injection, and the profile control with gel is an effective method to solve this problem. The use of conventional gel in water flooding reservoirs also has poor heat stability, so this paper proposes a new high-temperature gel (HTG) plugging agent on the basis of a laboratory experimental investigation. The HTG is prepared with nonionic filler and unsaturated amide monomer (AM) by graft polymerization and crosslinking, and the optimal gel formula, which has strong gelling strength and controllable gelation time, is obtained by the optimization of the concentration of main agent, AM/FT ratio, crosslinker, and initiator. To test the adaptability of the new HTG to heavy oil reservoirs and the performance of plugging steam channeling path and enhancing oil recovery, performance evaluation experiments and three-dimensional steam flooding and gel profile control experiments are conducted. The performance evaluation experiments indicate that the HTG has strong salt resistance and heat stability and still maintains strong gelling strength after 72 hrs at 200 °C. The singular sand-pack flooding experiments suggest that the HTG has good injectability, which can ensure the on-site construction safety. Moreover, the HTG has a high plugging pressure and washing out resistance to the high-temperature steam after gel forming and keeps the plugging ratio above 99.8% when the following steam injected volume reaches 10 PV after gel breakthrough. The three-dimensional steam flooding and gel profile control experiments results show that the HTG has good plugging performance in the steam channeling path and effectively controls its expanding. This forces the following steam, which is the steam injected after the gelling of HTG in the model, to flow through the steam unswept area, which improves the steam injection profile. During the gel profile control period, the cumulative oil production increases by 294.4 ml and the oil recovery is enhanced by 8.4%. Thus, this new HTG has a good effect in improving the steam injection profile and enhancing oil recovery and can be used to control the steam channeling in heavy oil reservoirs.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. B13-B27 ◽  
Author(s):  
Hemin Yuan ◽  
De-Hua Han ◽  
Weimin Zhang

Heavy oil reservoirs are important alternative energy resources to conventional oil and gas reservoirs. However, due to the high viscosity, most production methods of heavy oil reservoirs involve thermal production. Heavy oil reservoirs’ properties change dramatically during thermal production because the viscosity drops drastically with increasing temperature. Moreover, the velocity and density also decrease after steam injection, leading to a longer traveltime of seismic velocities and low impedance of the steam chamber zone. These changes of properties can act as indicators of the steam chamber and can be detected through the time-lapse inversion method. We first establish the rock-physics relationship between oil sands’ impedance and temperature on the basis of our previous laboratory work. Then, we perform the forward modeling of the heavy oil reservoir with the steam chamber to demonstrate the influence of steam injection on seismic profiles. Then, we develop a modified-Cauchy prior-distribution-based time-lapse inversion method and perform a 2D model test. The inversion method is then applied on the real field data, and the results are analyzed. By combining the inverted impedance and rock-physics relation between impedance and temperature, the temperature distribution map is obtained, which can work as an indicator of steam chamber. Finally, an empirical relation between impedance and velocity is established, and velocity is derived from the impedance.


Sign in / Sign up

Export Citation Format

Share Document