Primary Cultures of Cardiac Myocytes as In Vitro Models for Pharmacological and Toxicological Assessments

Author(s):  
ENRIQUE CHACON ◽  
DANIEL ACOSTA ◽  
JOHN J. LEMASTERS
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniela Giovannini ◽  
Federica Andreola ◽  
Paola Spitalieri ◽  
Ewa Krystyna Krasnowska ◽  
Arianna Colini Baldeschi ◽  
...  

AbstractOver the last 20 years, the efforts to develop new therapies for Parkinson’s disease (PD) have focused not only on the improvement of symptomatic therapy for motor and non-motor symptoms but also on the discovering of the potential causes of PD, in order to develop disease-modifying treatments. The emerging role of dysregulation of the Wnt/β-catenin signaling in the onset and progression of PD, as well as of other neurodegenerative diseases (NDs), renders the targeting of this signaling an attractive therapeutic opportunity for curing this brain disorder. The natriuretic peptides (NPs) atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), are cardiac and vascular-derived hormones also widely expressed in mammalian CNS, where they seem to participate in numerous brain functions including neural development/differentiation and neuroprotection. We recently demonstrated that ANP affects the Wnt/β-catenin pathway possibly through a Frizzled receptor-mediated mechanism and that it acts as a neuroprotective agent in in vitro models of PD by upregulating this signaling. Here we provide further evidence supporting the therapeutic potential of this class of natriuretic hormones. Specifically, we demonstrate that all the three natriuretic peptides are neuroprotective for SHSY5Y cells and primary cultures of DA neurons from mouse brain, subjected to neurotoxin insult with 6-hydroxydopamine (6-OHDA) for mimicking the neurodegeneration of PD, and these effects are associated with the activation of the Wnt/β-catenin pathway. Moreover, ANP, BNP, CNP are able to improve and accelerate the dopaminergic differentiation and maturation of hiPSCs-derived neural population obtained from two differed healthy donors, concomitantly affecting the canonical Wnt signaling. Our results support the relevance of exogenous ANP, BNP, and CNP as attractive molecules for both neuroprotection and neurorepair in PD, and more in general, in NDs for which aberrant Wnt signaling seems to be the leading pathogenetic mechanism.


2016 ◽  
Vol 9 (3) ◽  
pp. 435-454
Author(s):  
A.H. Heussner ◽  
T. Paget

Ochratoxin A (OTA) induces renal carcinomas in rodents with a specific localisation in the S3 segment of proximal tubules and distinct early severe tissue alterations, which have been observed also in other species. Pronounced species- and sex-specific differences in toxicity occur and similar effects cannot be excluded in humans, however precise mechanism(s) remain elusive until today. In such cases, the use of in vitro models for mechanistic investigations can be very useful; in particular if a non-genotoxic mechanism of cancer formation is assumed which include cytotoxic effects. However, potential genotoxic mechanisms can also be investigated in vitro. A crucial issue of in vitro research is the choice of the appropriate cell model. Apparently, the cellular target of OTA is the renal proximal tubular cell; therefore cells from this tissue area are the most reasonable model. Furthermore, cells from affected species should be used and can be compared to cells of human origin. Another important parameter is whether to use primary cultures or to choose a cell line from the huge variety of cell lines available. In any case, important characteristics and quality controls need to be verified beforehand. Therefore, this review discusses the renal in vitro models that have been used for the investigation of renal ochratoxin toxicity. In particular, we discuss the choice of the models and the essential parameters making them suitable models for ochratoxin research together with exemplary results from this research. Furthermore, new promising models such as hTERT-immortalised cells and 3D-cultures are briefly discussed.


2019 ◽  
Vol 20 (23) ◽  
pp. 5872 ◽  
Author(s):  
Landucci ◽  
Pellegrini-Giampietro ◽  
Bilia ◽  
Bergonzi

Neurological-related disorders are seen as an increasingly important aspect of welfare. While conventional medicine is still the mainstay for the treatment of these diseases, it is becoming apparent that patients are also seeking more natural and preventative interventions. Panax ginseng G115® and Ginkgo biloba GK501® extracts alone or in combination were used in two in vitro experimental models of primary cultures exposed to excitotoxicity: rat organotypic hippocampal slices exposed to either 5 µM kainic acid or 10 µM N-Methyl-d-aspartate for 24 hours, and mixed cortical cells exposed to 300 µM NMDA for 10 min. Cell death in the Cornu Ammonis areas CA3 or CA1 subregions of slices was quantified by measuring propidium iodide fluorescence, whereas in cortical cells, it was assessed by measuring the amount of lactate dehydrogenase. In slices, treatment with extracts alone or in combination significantly attenuated CA3 and CA1 damage induced by exposure to kainic acid or NMDA, respectively. A similar neuroprotective effect was observed in cortical cells exposed to NMDA. Analysis of cell signaling pathways found that the two extracts induced an increase of the phosphorylation and they reversed the decrease of phosphorylation of ERK1/2 and Akt induced by kainic acid and NMDA in organotypic hippocampal slices. These results suggest that P. ginseng G115® and G. biloba GK501® extracts may mediate their effects by activating phosphorylation of ERK1/2 and Akt signaling pathways, protecting against excitotoxicity-induced damage in in vitro models.


2008 ◽  
Vol 131 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Vasiliki Bistola ◽  
Marilena Nikolopoulou ◽  
Anastasia Derventzi ◽  
Agapi Kataki ◽  
Nikolaos Sfyras ◽  
...  

2014 ◽  
Vol 92 (8) ◽  
pp. 621-630 ◽  
Author(s):  
Francesco Angelucci ◽  
Francesca Gelfo ◽  
Marco Fiore ◽  
Nicoletta Croce ◽  
Aleksander A. Mathé ◽  
...  

Alzheimer’s disease (AD) is a disorder characterized by the accumulation of abnormally folded protein fragments in neurons, i.e., β-amyloid (Aβ) and tau protein, leading to cell death. Several neuropeptides present in the central nervous system (CNS) are believed to be involved in the pathophysiology of AD. Among them, neuropeptide Y (NPY), a small peptide widely distributed throughout the brain, has generated interest because of its role in neuroprotection against excitotoxicity in animal models of AD. In addition, it has been shown that NPY modulates neurogenesis. Interestingly, these latter effects are similar to those elicited by neurotrophins, which are critical molecules for the function and survival of neurons that degenerate during the course of AD. In this review we summarize the evidence for the involvement of NPY and neurotrophins in AD pathogenesis, and the similarity between them in CNS neurons. Finally, we recapitulate our recent in-vitro evidence for the involvement of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the neuroprotective effect elicited by NPY in AD neuron-like models (neuroblastoma cells or primary cultures exposed to toxic concentrations of Aβ’s pathogenic fragment 25–35), and propose a putative mechanism based on NPY-induced inhibition of voltage-dependent Ca2+ influx in pre- and post-synaptic neurons.


2014 ◽  
Vol 226 (06) ◽  
Author(s):  
D William ◽  
M Linnebacher ◽  
CF Classen

Reproduction ◽  
2000 ◽  
pp. 391-396 ◽  
Author(s):  
AH Duittoz ◽  
M Batailler

The aim of this study was to investigate the development of pulsatile GnRH secretion by GnRH neurones in primary cultures of olfactory placodes from ovine embryos. Culture medium was collected every 10 min for 8 h to detect pulsatile secretion. In the first experiment, pulsatile secretion was studied in two different sets of cultures after 17 and 24 days in vitro. In the second experiment, a set of cultures was tested after 10, 17 and 24 days in vitro to investigate the development of pulsatile GnRH secretion in each individual culture. This study demonstrated that (i) primary cultures of GnRH neurones from olfactory explants secreted GnRH in a pulsatile manner and that the frequency and mean interpulse duration were similar to those reported in castrated ewes, and (ii) pulsatile secretion was not present at the beginning of the culture but was observed between 17 and 24 days in vitro, indicating the maturation of individual neurones and the development of their synchronization.


Sign in / Sign up

Export Citation Format

Share Document